Evidence for basaltic volcanism on the Moon within the past 100 million years

Abstract

The bulk of basaltic magmatism on the Moon occurred from 3.9 to 3.1 billion years ago on the ancient lunar mare plains1. There is evidence for basaltic volcanism as recently as 2.9 billion years ago from crystallization ages2 and a billion years ago from stratigraphy3,4. An enigmatic surface formation named Ina (18.65° N, 5.30° E) may represent much younger mare volcanism, but age estimates are poorly constrained5,6,7,8. Here we investigate 70 small topographic anomalies, termed irregular mare patches (100–5,000 m maximum dimension), on the lunar nearside with irregular morphologies and textures similar to Ina, using Lunar Reconnaissance Orbiter narrow angle camera images9, digital terrain models and wide angle camera colour ratios. The irregular mare patches exhibit sharp, metre-scale morphology with relatively few superposed impact craters larger than ten metres in diameter. Crater distributions from the three largest irregular mare patches imply ages younger than 100 million years, based on chronology models of the lunar surface10,11. The morphology of the features is also consistent with small basaltic eruptions that occurred significantly after the established cessation of lunar mare basaltic volcanism. Such late-stage eruptions suggest a long decline of lunar volcanism and constrain models of the Moon’s thermal evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Distribution of IMPs on the nearside.
Figure 2: Examples of IMPs.
Figure 3: CSFDs from IMPs.

References

  1. 1

    Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial Planets 1286 (Pergamon, 1981).

    Google Scholar 

  2. 2

    Borg, L. E., Shearer, C. K., Asmerom, Y. & Papike, J. J. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature 432, 209–211 (2004).

    Article  Google Scholar 

  3. 3

    Schultz, P. H. & Spudis, P. D. Beginning and end of lunar mare volcanism. Nature 302, 233–236 (1983).

    Article  Google Scholar 

  4. 4

    Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G. Ages and stratigraphy of lunar mare basalts: A synthesis. GSA Special Papers 477, 1–51 (2011).

    Google Scholar 

  5. 5

    Whitaker, E. A. in Apollo 15 Preliminary Science Report, NASA SP-289, Ch. 25, 84–85 (NASA, 1972)

  6. 6

    El-Baz, F. in Apollo 17 Preliminary Science Report, NASA SP-330, Ch. 30, 13–17 (NASA, 1973)

  7. 7

    Strain, P. L. & El-Baz, F. The geology and morphology of Ina. Proc. Lunar Sci. Conf. 11, 2437–2446 (1980).

    Google Scholar 

  8. 8

    Schultz, P. H., Staid, M. I. & Pieters, C. M. Lunar activity from recent gas release. Nature 444, 184–186 (2006).

    Article  Google Scholar 

  9. 9

    Robinson, M. S. et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev. 150, 81–124 (2010).

    Article  Google Scholar 

  10. 10

    Neukum, G., Ivanov, B. A. & Hartmann, W. K. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001).

    Article  Google Scholar 

  11. 11

    Michael, G. G. & Neukum, G. Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 294, 223–229 (2010).

    Article  Google Scholar 

  12. 12

    Garry, W. B. et al. The origin of Ina: Evidence for inflated lava flows on the Moon. J. Geophys. Res. 117, E00H31 (2012).

    Article  Google Scholar 

  13. 13

    Hiesinger, H. et al. How old are young lunar craters? J. Geophys. Res. 117, E00H10 (2012).

    Article  Google Scholar 

  14. 14

    Gault, D. E. Saturation and equilibrium conditions for impact cratering on the lunar surface: Criteria and implications. Radio Sci. 5, 273–291 (1970).

    Article  Google Scholar 

  15. 15

    Lucey, P. G., Blewett, D. T., Taylor, G. J. & Hawke, B. R. Imaging of lunar surface maturity. J. Geophys. Res. 105, 20377–20386 (2000).

    Article  Google Scholar 

  16. 16

    Zanetti, M., Jolliff, B. L., van der Bogert, C. H. & Hiesinger, H. New determination of crater size-frequency distribution variation on continuous ejecta deposits: Results from Aristarchus crater. Lunar Planet. Sci. Conf. 44, abstr. 1842 (2013).

    Google Scholar 

  17. 17

    Brett, R. Thicknesses of some lunar mare basalt flows and ejecta blankets based on chemical kinetic data. Proc. Lunar Sci. Conf. 6, 1135–1141 (1975).

    Google Scholar 

  18. 18

    Schaber, G. G. Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography. Proc. Lunar Sci. Conf. 4, 73–92 (1973).

    Google Scholar 

  19. 19

    Staid, M. I. et al. The spectral properties of Ina: New observations from the Moon Mineralogy Mapper. Lunar Planet. Sci. Conf. 42, abstr. 2499 (2011).

    Google Scholar 

  20. 20

    Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. 105, 4197–4216 (2000).

    Article  Google Scholar 

  21. 21

    Warren, P. H. & Wasson, J. T. The origin of KREEP. Rev. Geophys. Space Phys. 17, 73–88 (1979).

    Article  Google Scholar 

  22. 22

    Head, J. W. & Wilson, L. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 56, 2155–2175 (1992).

    Article  Google Scholar 

  23. 23

    Wieczorek, M. A. & Phillips, R. J. The ‘Procellarum KREEP Terrane’: Implications for mare volcanism and lunar evolution. J. Geophys. Res. 105, 20417–20430 (2000).

    Article  Google Scholar 

  24. 24

    Kneissl, T., van Gasselt, S. & Neukum, G. Map-projection-independent crater size-frequency determination in GIS environments-New software tool for ArcGIS. Planet. Space Sci. 59, 1243–1254 (2011).

    Article  Google Scholar 

  25. 25

    McEwen, A. S. & Bierhaus, E. B. The importance of secondary cratering to age constraints on planetary surfaces. Annu. Rev. Earth Planet. Sci. 34, 535–567 (2006).

    Article  Google Scholar 

  26. 26

    Schultz, P. H. & Spencer, J. Effects of substrate strength on crater statistics: Implications for surface ages and gravity scaling. Proc. Lunar Sci. Conf. 10, 1081–1083 (1979).

    Google Scholar 

  27. 27

    van der Bogert, C. H. et al. Discrepancies between crater size-frequency distributions on ejecta and impact melt pools at lunar craters: An effect of differing target properties? Lunar Planet. Sci. Conf. 41, abstr. 1533 (2010).

    Google Scholar 

  28. 28

    Dundas, C. M., Keszthelyi, L. P., Bray, V. J. & McEwen, A. S. The role of material properties in the cratering record of young platy-ridged lava on Mars. Geophys. Res. Lett. 37, L12203 (2010).

    Google Scholar 

  29. 29

    Stöffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Sci. Rev. 96, 9–54 (2001).

    Article  Google Scholar 

  30. 30

    Boyd, A. K., Robinson, M. S. & Sato, H. Lunar Reconnaissance Orbiter Wide Angle Camera photometry: An empirical solution. Lunar Planet. Sci. Conf. 43, abstr. 2795 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Lunar Reconnaissance Orbiter project and would not have been possible without the hard work of the Lunar Reconnaissance Orbiter Camera Science Operations Center team. Thank you to R. Wagner for help with figure preparation.

Author information

Affiliations

Authors

Contributions

S.E.B. and M.S.R. conceived and designed the analyses. S.E.B. collected and analysed data; J.D.S. and S.E.B. both documented and characterized new IMPs. S.J.L. assisted in the interpretation of remote sensing data. C.H.v.d.B. and H.H. aided in the methodology and interpretation of CSFDs. S.E.B. wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to S. E. Braden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3061 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braden, S., Stopar, J., Robinson, M. et al. Evidence for basaltic volcanism on the Moon within the past 100 million years. Nature Geosci 7, 787–791 (2014). https://doi.org/10.1038/ngeo2252

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing