Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent Arctic amplification and extreme mid-latitude weather

Abstract

The Arctic region has warmed more than twice as fast as the global average — a phenomenon known as Arctic amplification. The rapid Arctic warming has contributed to dramatic melting of Arctic sea ice and spring snow cover, at a pace greater than that simulated by climate models. These profound changes to the Arctic system have coincided with a period of ostensibly more frequent extreme weather events across the Northern Hemisphere mid-latitudes, including severe winters. The possibility of a link between Arctic change and mid-latitude weather has spurred research activities that reveal three potential dynamical pathways linking Arctic amplification to mid-latitude weather: changes in storm tracks, the jet stream, and planetary waves and their associated energy propagation. Through changes in these key atmospheric features, it is possible, in principle, for sea ice and snow cover to jointly influence mid-latitude weather. However, because of incomplete knowledge of how high-latitude climate change influences these phenomena, combined with sparse and short data records, and imperfect models, large uncertainties regarding the magnitude of such an influence remain. We conclude that improved process understanding, sustained and additional Arctic observations, and better coordinated modelling studies will be needed to advance our understanding of the influences on mid-latitude weather and extreme events.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polar amplification of temperature trends, 1979–2014.
Figure 2: Winter temperature trends since 1960 and over the most recent period from 1990.
Figure 3: Temperature and precipitation extremes.
Figure 4: Schematic of ways to influence Northern Hemisphere mid-latitude weather.

References

  1. Stroeve, J. C. et al. Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys. Res. Lett. 38, L02502 (2011).

    Article  Google Scholar 

  2. Kwok, R. & Rothrock, D. A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 36, L15501 (2009).

    Article  Google Scholar 

  3. Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: adaptation and mitigation timescales. Earth's Future 2, 68–74 (2014).

    Article  Google Scholar 

  4. Derksen, C. & Brown, R. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett. 39, L19504 (2012).

    Article  Google Scholar 

  5. Matsumura, S., Zhang, X. & Yamazaki, K. Summer Arctic atmospheric circulation response to spring Eurasian snow cover and its possible linkage to accelerated sea ice decrease. J. Clim. http://dx.doi.org/10.1175/JCLI-D-13-00549.1 (2014).

  6. Mudryk, L. R., Kushner, P. J. & Derksen, C. Interpreting observed Northern Hemisphere snow trends with large ensembles of climate simulations. Clim. Dynam. 43, 345–359 (2013).

    Article  Google Scholar 

  7. IPCC Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 3–29 (Cambridge Univ, Press, 2013).

  8. Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. M. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).

    Article  Google Scholar 

  9. Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    Article  Google Scholar 

  10. Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 133, 459–77 (2013).

    Google Scholar 

  11. Holland, M. M. & Bitz, C. M. Polar amplification of climate change in coupled models. Clim. Dynam. 21, 221–232 (2003).

    Article  Google Scholar 

  12. Stroeve, J. C. et al. The Arctic's rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110, 1005–1027 (2012).

    Article  Google Scholar 

  13. Gillett, N. P. et al. Attribution of polar warming to human influence. Nature Geosci. 1, 750–754 (2008).

    Article  Google Scholar 

  14. Winton, M. Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett. 33, L03701 (2006).

    Google Scholar 

  15. Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Article  Google Scholar 

  16. Screen, J. A., Deser, C. & Simmonds, I. Local and remote controls on observed Arctic warming. Geophys. Res Lett. 39, L10709 (2012).

    Article  Google Scholar 

  17. Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nature Geosci. 2, 294–300 (2009).

    Article  Google Scholar 

  18. Francis, J. A. & Hunter, E. New insight into the disappearing Arctic sea ice. EOS Trans. Am. Geophys. Union 87, 509–511 (2006).

    Article  Google Scholar 

  19. Graverson, R. G. & Wang, M. Polar amplification in a coupled climate model with locked albedo. Clim. Dynam. 33, 629–643 (2009).

    Article  Google Scholar 

  20. Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geosci. 7, 181–184 (2014).

    Article  Google Scholar 

  21. Graversen, R. G., Mauritsen, T., Tjernstrom, M., Kallen, E. & Svensson, G. Vertical structure of recent Arctic warming. Nature 451, 53–56 (2008).

    Article  Google Scholar 

  22. Wood, K. R. et al. Is there a “new normal” climate in the Beaufort Sea? Polar Res. 32, 19552 (2013).

    Article  Google Scholar 

  23. Steele, M., Ermold, W. & Zhang, J. Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett. 35, L19715 (2008).

    Article  Google Scholar 

  24. Inoue, J. & Hori, M. E. Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? Geophys. Res. Lett. 38, L12502 (2011).

    Google Scholar 

  25. Screen, J. A. & Simmonds, I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic amplification. Geophys. Res. Lett. 37, L16707 (2010).

    Article  Google Scholar 

  26. Min, S. K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article  Google Scholar 

  27. Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nature Clim. Change 2, 491–496 (2012).

    Article  Google Scholar 

  28. Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  29. Coumou, D. & Robinson, A. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 8, 034018 (2013).

    Article  Google Scholar 

  30. Coumou, D., Robinson, A. & Rahmstorf, S. Global increase in record-breaking monthly-mean temperatures. Climatic Change 118, 771–782 (2013).

    Article  Google Scholar 

  31. Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nature Clim. Change 4, 161–163 (2014).

    Article  Google Scholar 

  32. Donat, M. G. et al. Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc. 94, 997–1006 (2013).

    Article  Google Scholar 

  33. Screen, J. A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Clim. Change 4, 577–582 (2014).

    Article  Google Scholar 

  34. Cohen, J., Barlow, M. & Saito, K. Decadal fluctuations in planetary wave forcing modulate global warming in late boreal winter. J. Clim. 22, 4418–4426 (2009).

    Article  Google Scholar 

  35. Liu, J., Curry, J. A., Wang, H., Song, M. & Horton, R. Impact of declining Arctic sea ice on winter snow. Proc. Natl Acad. Sci. USA 109, 4074–4079 (2012).

    Article  Google Scholar 

  36. Greene, C. H. & Monger, B. C. An Arctic wild card in the weather. Oceanography 25, 7–9 (2012).

    Article  Google Scholar 

  37. Cohen, J., Furtado, J., Barlow, J. M., Alexeev, V. & Cherry, J. Arctic warming, increasing fall snow cover and widespread boreal winter cooling. Environ. Res. Lett. 7, 014007 (2012).

    Article  Google Scholar 

  38. Tang, Q., Zhang, X., Yang, X. & Francis, J. A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 8, 014036 (2013).

    Article  Google Scholar 

  39. Tollefson, J. US cold snap fuels climate debate. Nature http://dx.doi.org/10.1038/nature.2014.14485 (2014).

  40. Hamilton, L. C. & Lemcke-Stampone, M. Arctic warming and your weather: public belief in the connection. Int. J. Climatol. 34, 1723–1728 (2013).

    Article  Google Scholar 

  41. Alexeev, V. A., Langen, P. L. & Bates, J. R. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim. Dynam. 24, 655–666 (2005).

    Article  Google Scholar 

  42. Cohen, J., Furtado, J., Barlow, M., Alexeev, V. &. Cherry, J. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L04705 (2012).

    Google Scholar 

  43. Wallace, J. M., Held, I. M., Thompson, D. W. J., Trenberth, K. E. & Walsh, J. E. Global warming and winter weather. Science 343, 729–730 (2014).

    Article  Google Scholar 

  44. Palmer, T. Record-breaking winters and global climate change. Science 344, 803–804 (2014).

    Article  Google Scholar 

  45. Fischer, E. M. & Knutti, R. Heated debate on cold weather. Nature Clim. Change 4, 577–582 (2014).

    Article  Google Scholar 

  46. Cohen, J., Jones, J., Furtado, J. C. &. Tziperman, E. Warm Arctic, cold continents: a common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography 26, 150–160 (2013).

    Article  Google Scholar 

  47. Vihma, T. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys. http://dx.doi.org/10.1007/s10712-014-9284-0 (2014).

  48. Hoskins, B. The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Q. J. R. Meteorol. Soc. 139, 573–584 (2013).

    Article  Google Scholar 

  49. Woollings, T. & Blackburn, M. The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Clim. 25, 886–902 (2012).

    Article  Google Scholar 

  50. Bader, J. et al. A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: observations and projected changes. Atmos. Res. 101, 809–834 (2011).

    Article  Google Scholar 

  51. Overland, J. E., Wood, K. R. & Wang, M. Warm Arctic–cold continents: impacts of the newly open Arctic Sea. Polar Res. 30, 15787 (2011).

    Article  Google Scholar 

  52. Wu, A., Hsieh, W. W., Boer, G. J. & Zwiers, F. W. Changes in the Arctic Oscillation under increased atmospheric greenhouse gases. Geophys. Res. Lett. 34, L12701 (2007).

    Article  Google Scholar 

  53. Mote, T. & Kutney, E. Regions of autumn Eurasian snow cover and associations with North American winter temperatures. Int. J. Climatol. 32, 1164–1177 (2012).

    Article  Google Scholar 

  54. Cohen, J. & Entekhabi, D. Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett. 26, 345–348 (1999).

    Article  Google Scholar 

  55. Cohen, J. & Jones, J. A new index for more accurate winter predictions. Geophys. Res. Lett. 38, L21701 (2011).

    Google Scholar 

  56. Peings, Y., Brun, E., Mauvais, V. & Douville, H. How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophys. Res. Lett. 40, 183–188 (2013).

    Article  Google Scholar 

  57. Brown, R. D. & Derksen, C. Is Eurasian October snow cover extent increasing? Environ. Res. Lett. 8, 024006 (2013).

    Article  Google Scholar 

  58. Ghatak, D., Frei, A., Gong, G., Stroeve, J. & Robinson, D. On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. J. Geophys. Res. 115, D24105 (2010).

    Article  Google Scholar 

  59. Ghatak, D. et al. Simulated Siberian snow cover response to observed Arctic sea ice loss, 1979–2008. J. Geophys. Res. 117, D23108 (2012).

    Article  Google Scholar 

  60. Budikova, D. Role of Arctic sea ice in global atmospheric circulation. Glob. Planet. Change 68, 149–163 (2009).

    Article  Google Scholar 

  61. Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R. & Veron, D. E. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett. 36, L07503 (2009).

    Article  Google Scholar 

  62. Overland, J. E. & Wang, M. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62, 1–9 (2010).

    Article  Google Scholar 

  63. Strong, C., Magnusdottir, G. & Stern, H. Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Clim. 22, 6021–6032 (2009).

    Article  Google Scholar 

  64. Hopsch, S., Cohen, J. & Dethloff, K. Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A 64, 18624 (2012).

    Article  Google Scholar 

  65. Magnusdottir, G., Deser, C. & Saravanan, R. The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Clim. 17, 857–876 (2004).

    Article  Google Scholar 

  66. Deser, C., Magnusdottir, G., Saravanan, R. & Phillips, A. The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Clim. 17, 877–889 (2004).

    Article  Google Scholar 

  67. Alexander, M. A. et al. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Clim. 17, 890–905 (2004).

    Article  Google Scholar 

  68. Strey, S. T., Chapman, W. L. & Walsh, J. E. The 2007 sea ice minimum: impacts on the Northern Hemisphere atmosphere in late autumn and early winter. J. Geophys. Res. 115, D23103 (2010).

    Article  Google Scholar 

  69. Porter, D. F., Cassano, J. J. & Serreze, M. C. Local and large-scale atmospheric responses to reduced Arctic sea ice and ocean warming in the WRF model. J. Geophys. Res. 117, D11115 (2012).

    Google Scholar 

  70. Bluthgen, J., Gerdes, R. & Werner, M. Atmospheric response to the extreme Arctic sea ice conditions in 2007. Geophys. Res. Lett. 39, L02707 (2012).

    Article  Google Scholar 

  71. Orsolini, Y., Senan, R., Benestad, R. & Melsom, A. Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Clim. Dynam. 38, 2437–2448 (2012).

    Article  Google Scholar 

  72. Singarayer, J. S., Valdes, P. J. & Bamber, J. L. The atmospheric impact of uncertainties in recent Arctic sea-ice reconstructions. J. Clim. 18, 3996–4012 (2005).

    Article  Google Scholar 

  73. Screen, J. A., Deser, C., Simmonds, I. & Tomas, R. Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim. Dynam. 43, 333–344 (2013).

    Article  Google Scholar 

  74. Peings, Y. & Magnusdottir, G. Response of the wintertime Northern Hemispheric atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. J. Clim. 27, 244–264 (2014).

    Article  Google Scholar 

  75. Tanaka, H. L. & Seki, S. Development of a three-dimensional spectral linear baroclinic model and its application to the baroclinic instability associated with positive and negative Arctic Oscillation indices. J. Meteorol. Soc. Jpn 91, 193–213 (2013).

    Article  Google Scholar 

  76. Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801 (2012).

    Article  Google Scholar 

  77. Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013).

    Article  Google Scholar 

  78. Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nature Clim. Change http://dx.doi.org/10.1038/nclimate2271 (2014).

  79. Barnes, E. A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 40, 1–6 (2013).

    Article  Google Scholar 

  80. Allen, R. J. & Sherwood, S. C. Warming maximum in the tropical upper troposphere deduced from thermal winds. Nature Geosci. 1, 399–403 (2008).

    Article  Google Scholar 

  81. Screen, J. A. & Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40, 959–964 (2013).

    Article  Google Scholar 

  82. Barnes, E. A., Dunn-Sigouin, E., Masato, G. & Woollings, T. Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett. 41, 638–644 (2014).

    Article  Google Scholar 

  83. Kintisch, E. Into the maelstrom. Science 344, 250–253 (2014).

    Article  Google Scholar 

  84. Fletcher, C., Hardiman, S. C., Kushner, P. J. & Cohen, J. The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Clim. 22, 1208–1222 (2009).

    Article  Google Scholar 

  85. Allen, R. J. & Zender, C. S. Forcing of the Arctic Oscillation by Eurasian snow cover. J. Clim. 24, 6528–6539 (2011).

    Article  Google Scholar 

  86. Cohen, J., Furtado, J. C., Jones, J., Barlow, M., Whittleston, D. & Entekhabi, D. Linking Siberian snow cover to precursors of stratospheric variability. J. Clim. 27, 5422–5432 (2014).

    Article  Google Scholar 

  87. Peings Y., Saint-Martin, D. & Douville, H. A numerical sensitivity study of the influence of Siberian snow on the northern annular mode. J. Clim. 25, 592–607 (2012).

    Article  Google Scholar 

  88. Petoukhov, V. & Semenov, V. A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. 115, D21111 (2010).

    Article  Google Scholar 

  89. Inoue, J., Hori, M. E. & Takaya, K. The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Clim. 25, 2561–2568 (2012).

    Article  Google Scholar 

  90. Jaiser, R., Dethloff, K., Handorf, D., Rinke, A. & Cohen, J. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 64, 11595 (2012).

    Article  Google Scholar 

  91. Jaiser, R., Dethloff, K. & Handorf, D. Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus A 65, 19375 (2013).

    Article  Google Scholar 

  92. Honda, M., Inue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, L08707 (2009).

    Article  Google Scholar 

  93. Hardiman, S. C., Kushner, P. J. & Cohen, J. Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. J. Geophys. Res. 113, D21123 (2008).

    Article  Google Scholar 

  94. Martin, S. & Diffenbaugh, N. S. Transient twenty-first century changes in daily-scale temperature extremes in the United States. Clim. Dynam. 42, 1383–1404 (2014).

    Article  Google Scholar 

  95. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  96. Hansen, J. E. & Lebedeff, S. Global trends of measured surface air temperature. J. Geophys. Res. 92, 13345–13372 (1987).

    Article  Google Scholar 

  97. Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article  Google Scholar 

  98. Garfinkel, C. I., Hartmann, D. L. & Sassi, F. Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar cortices. J. Clim. 23, 3282–3299 (2010).

    Article  Google Scholar 

  99. Kolstad, E. W. & Charlton-Perez, A. J. Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim. Dynam. 37, 1443–1456 (2010).

    Article  Google Scholar 

  100. Cohen, J. & Jones, J. Tropospheric precursors and stratospheric warmings. J. Clim. 24, 6562–6572 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Barnes for many helpful discussions and suggested revisions to the manuscript. J.C. is supported by the National Science Foundation grants BCS-1060323 and AGS-1303647. J.S. is funded by Natural Environment Research Council grant NE/J019585/1. M.B. received support from National Science Foundation grant ARC-0909272 and NASA NNX13AN36G. J.O. receives support from the Arctic Research Project of the National Oceanic and Atmospheric Administration Climate Program Office and the Office of Naval Research, Code 322.

Author information

Authors and Affiliations

Authors

Contributions

J.C. proposed and was the main author of the manuscript. All co-authors contributed to the writing of the manuscript. J.S. created Fig. 1, J.F. Figs 2 & 4, D.C. Fig. 3, J.F. and J.C. Fig. 4, M.B. and J.C. Fig. B1, and D.W. and J.C. Fig. B2.

Corresponding author

Correspondence to Judah Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

AA and mid-latitude weather outside of winter (PDF 757 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, J., Screen, J., Furtado, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nature Geosci 7, 627–637 (2014). https://doi.org/10.1038/ngeo2234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing