Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction

Abstract

Open-ocean ecosystems experienced profound disruptions to biodiversity and ecological structure during the Cretaceous/Palaeogene mass extinction about 66 million years ago1,2,3. It has been suggested that during this mass extinction, a collapse of phytoplankton production rippled up the food chain, causing the wholesale loss of consumers and top predators3,4,5. Pelagic fish represent a key trophic link between primary producers and top predators, and changes in their abundance provide a means to examine trophic relationships during extinctions. Here we analyse accumulation rates of microscopic fish teeth and shark dermal scales (ichthyoliths) in sediments from the Pacific Ocean and Tethys Sea across the Cretaceous/Palaeogene extinction to reconstruct fish abundance. We find geographic differences in post-disaster ecosystems. In the Tethys Sea, fish abundance fell abruptly at the Cretaceous/Palaeogene boundary and remained depressed for at least 3 million years. In contrast, fish abundance in the Pacific Ocean remained at or above pre-boundary levels for at least four million years following the mass extinction, despite marked extinctions in primary producers and other zooplankton consumers in this region. We suggest that the mass extinction did not produce a uniformly dead ocean or microbially dominated system. Instead, primary production, at least regionally, supported ecosystems with mid-trophic-level abundances similar to or above those of the Late Cretaceous.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the sites included in this study and relative changes in ichthyolith accumulation across the boundary.
Figure 2: Global pattern of ichthyolith accumulation rates through the K/Pg mass extinction.
Figure 3: Central Pacific (ODP Site 1209) comparison of mass accumulation rates for different trophic groups through the K/Pg mass extinction.

Similar content being viewed by others

References

  1. Coxall, H. K., D’Hondt, S. & Zachos, J. C. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction. Geology 34, 297–300 (2006).

    Article  Google Scholar 

  2. D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).

    Article  Google Scholar 

  3. D’Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D. & Lindinger, M. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282, 276–279 (1998).

    Article  Google Scholar 

  4. Hsu, K. J. & McKenzie, J. A. A ‘Strangelove’ ocean in the earliest Tertiary. Geophys. Monogr. 32, 487–492 (1985).

    Google Scholar 

  5. Kump, L. R. Interpreting carbon-isotope excursions—Strangelove oceans. Geology 19, 299–302 (1991).

    Article  Google Scholar 

  6. Kriwet, J. & Benton, M. J. Neoselachian (Chondrichthyes, Elasmobranchii) diversity across the Cretaceous-Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 181–194 (2004).

    Article  Google Scholar 

  7. Friedman, M. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proc. Natl Acad. Sci. USA 106, 5218–5223 (2009).

    Article  Google Scholar 

  8. Friedman, M. & Sallan, L. C. Five hundred million years of extinction and recovery: A Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55, 707–742 (2012).

    Article  Google Scholar 

  9. Ward, P. D., Kennedy, W. J., Macleod, K. G. & Mount, J. F. Ammonite and inoceramid bivalve extinction patterns in Cretaceous Tertiary boundary sections of the Biscay region (southwestern France, northern Spain). Geology 19, 1181–1184 (1991).

    Article  Google Scholar 

  10. Hull, P. M., Norris, R. D., Bralower, T. J. & Schueth, J. D. A role for chance in marine recovery from the end-Cretaceous extinction. Nature Geosci. 4, 856–860 (2011).

    Article  Google Scholar 

  11. Jiang, S. J., Bralower, T. J., Patzkowsky, M. E., Kump, L. R. & Schueth, J. D. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nature Geosci. 3, 280–285 (2010).

    Article  Google Scholar 

  12. Doyle, P. S. & Riedel, W. R. Cenozoic and Late Cretaceous Ichthyoliths (Cambridge Univ. Press, 1985).

    Google Scholar 

  13. Doyle, P. S. & Riedel, W. R. Ichthyoliths: Present Status of Taxonomy and Stratigraphy of Microscopic Fish Skeletal Debris Vol. 79–16 (Scripps Institution of Oceanography, University of California, 1979).

    Google Scholar 

  14. Rüber, L., Verheyen, E. & Meyer, A. Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proc. Natl Acad. Sci. USA 96, 10230–10235 (1999).

    Article  Google Scholar 

  15. Zhou, L. & Kyte, F. T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596. Paleoceanography 7, 441–465 (1992).

    Article  Google Scholar 

  16. Zhou, L., Kyte, F. T. & Bohor, B. F. Cretaceous/Tertiary boundary of DSDP Site 596, South Pacific. Geology 19, 694–697 (1991).

    Article  Google Scholar 

  17. Snoeckx, H., Rea, D., Jones, C. & Ingram, B. Eolian and silica deposition in the central North Pacific: Results from Sites 885/886. Proc. Ocean Drill. Program, Sci. Results 145, 219–230 (1995).

    Google Scholar 

  18. Westerhold, T. et al. Astronomical calibration of the Paleocene time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 377–403 (2008).

    Article  Google Scholar 

  19. Westerhold, T., Röhl, U. & Laskar, J. Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochem. Geophys. Geosyst. 13, Q06015 (2012).

    Article  Google Scholar 

  20. Hilgen, F. J., Kuiper, K. F. & Lourens, L. J. Evaluation of the astronomical time scale for the Paleocene and earliest Eocene. Earth Planet. Sci. Lett. 300, 139–151 (2010).

    Article  Google Scholar 

  21. Silva, I. P. Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy II. Biostratigraphy. Geol. Soc. Am. Bull. 88, 371–374 (1977).

    Article  Google Scholar 

  22. Roggenthen, W. M. & Napoleone, G. Upper Cretaceous-Paleocene Magnetic Stratigraphy at Gubbio, Italy: 4. Upper Maastrichtian-Paleocene Magnetic Stratigraphy. Geol. Soc. Am. Bull. 88, 378–382 (1977).

    Article  Google Scholar 

  23. Mukhopadhyay, S., Farley, K. & Montanari, A. A short duration of the Cretaceous-Tertiary boundary event: Evidence from extraterrestrial helium-3. Science 291, 1952–1955 (2001).

    Article  Google Scholar 

  24. Shackleton, N. J. Accumulation rates in Leg 74 sediments. Initial Rep. Deep Sea Drill. Proj. 74, 621–644 (1984).

    Google Scholar 

  25. Alegret, L., Thomas, E. & Lohmann, K. C. End-Cretaceous marine mass extinction not caused by productivity collapse. Proc. Natl Acad. Sci. USA 109, 728–732 (2012).

    Article  Google Scholar 

  26. Hull, P. M. & Norris, R. D. Diverse patterns of ocean export productivity change across the Cretaceous-Paleogene boundary: New insights from biogenic barium. Paleoceanography 26, PA3205 (2011).

    Article  Google Scholar 

  27. Sepulveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K. U. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326, 129–132 (2009).

    Article  Google Scholar 

  28. Berggren, W. A. & Norris, R. D. Biostratigraphy, phylogeny and systematics of the Paleocene trochospiral planktic foraminifera. Micropaleontology 43, 280–280 (1997).

    Article  Google Scholar 

  29. Shipboard Scientific Party. Site 1209. in Bralower, T. J. et al., Proc. ODP, Init. Repts., 198 (Ocean Drilling Program), 1102 (2012)

  30. Gradstein, F. M., Ogg, J. G. & Schmitz, M. The Geologic Time Scale 2012 Vol. 2 (Elsevier, 2012).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by a NASA Exobiology grant NNX07AK62G (to R.D.N.) and supported by the Ocean Drilling Program (special thanks to P. Rumford). Field work for collection and processing of Gubbio samples was funded by a Lewis and Clark Fund for Exploration and Field Research in Astrobiology by the American Philosophical Society in 2012 to E.C.S. Assistance in the field was provided by J. Dhaliwal.

Author information

Authors and Affiliations

Authors

Contributions

R.D.N. and P.M.H. conceived the study; E.C.S. developed the methods, collected field samples, and generated and analysed the data; all authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Elizabeth C. Sibert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 9592 kb)

Supplementary Information

Supplementary Information (XLS 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibert, E., Hull, P. & Norris, R. Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction. Nature Geosci 7, 667–670 (2014). https://doi.org/10.1038/ngeo2227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing