Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong tidal heating in an ultralow-viscosity zone at the core–mantle boundary of the Moon


Tidal heating of a solid planetary body occurs by viscous dissipation, depending on its internal structure1,2,3,4,5 and thermal5,6,7,8 and orbital6,7,8,9 states. Calculations of the response of the Moon to tidal forces have considered lunar interior structure1,2,3,4,5, but have not reproduced the geodetically observed dependence of dissipation on the lunar tidal period10. The attenuation of seismic waves in the deep lunar interior11,12 is expected to be consistent with a low-viscosity layer at the core–mantle boundary, which may explain the observed frequency dependence13. Here we numerically simulate the viscoelastic tidal response of a Moon that contains a low-viscosity layer at the core–mantle boundary and compare with geodetic observations10,14,15. In our simulations, a layer with a viscosity of about 2 × 1016 Pa s leads to frequency-dependent tidal dissipation that matches tidal dissipation measurements at both monthly and annual periods. Compared with the lunar asthenosphere, the calculated viscosity is extremely low, and suggests partial melting at the lunar core–mantle boundary. We also find that tidal dissipation is not evenly distributed in the lunar interior, but localized within the low-viscosity layer, which implies that this layer may act as a thermal blanket16 on the lunar core and influence the Moon’s thermal evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Reference interior profiles including the low-viscosity zone.
Figure 2: Dependence of the Love number and quality factor on the low-viscosity zone and tidal period.


  1. 1

    Ross, M. & Schubert, G. Tidal dissipation in a viscoelastic planet. J. Geophys. Res. 91, D447–D452 (1986).

    Article  Google Scholar 

  2. 2

    Khan, A., Mosegaard, K., Williams, J. G. & Lognonné, P. Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector. J. Geophys. Res. 109, E09007 (2004).

    Article  Google Scholar 

  3. 3

    Khan, A. & Mosegaard, K. Further constraints on the deep lunar interior. Geophys. Res. Lett. 32, L22203 (2005).

    Article  Google Scholar 

  4. 4

    Efroimsky, M. Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112, 283–330 (2012).

    Article  Google Scholar 

  5. 5

    Nimmo, F., Faul, U. H. & Garnero, E. J. Dissipation at tidal and seismic frequencies in a melt-free Moon. J. Geophys. Res. 117, E09005 (2012).

    Article  Google Scholar 

  6. 6

    Peale, S. J. & Cassen, P. Contribution of tidal dissipation to lunar thermal history. Icarus 36, 245–269 (1978).

    Article  Google Scholar 

  7. 7

    Ross, M. N. & Schubert, G. Evolution of the lunar orbit with temperature-dependent and frequency-dependent dissipation. J. Geophys. Res. 94, 9533–9544 (1989).

    Article  Google Scholar 

  8. 8

    Meyer, J., Elkins-Tanton, L. & Wisdom, J. Coupled thermal-orbital evolution of the early Moon. Icarus 208, 1–10 (2010).

    Article  Google Scholar 

  9. 9

    Bills, B. G. & Ray, R. D. Lunar orbital evolution: A synthesis of recent results. Geophys. Res. Lett. 26, 3045–3048 (1999).

    Article  Google Scholar 

  10. 10

    Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T. & Dickey, J. O. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001).

    Article  Google Scholar 

  11. 11

    Nakamura, Y. et al. New seismic data on state of deep lunar interior. Science 181, 49–51 (1973).

    Article  Google Scholar 

  12. 12

    Nakamura, Y. Farside deep moonquakes and deep interior of the Moon. J. Geophys. Res. 110, E01001 (2005).

    Google Scholar 

  13. 13

    Nakada, M. & Karato, S. Low viscosity of the bottom of the Earth’s mantle inferred from the analysis of Chandler wobble and tidal deformation. Phys. Earth Planet. Inter. 192, 68–80 (2012).

    Article  Google Scholar 

  14. 14

    Goossens, S. et al. Lunar gravity field determination using SELENE same-beam differential VLBI tracking data. J. Geod 85, 205–228 (2011).

    Article  Google Scholar 

  15. 15

    Yan, J. G. et al. CEGM02: An improved lunar gravity model using Chang’E-1 orbital tracking data. Planet. Space Sci. 62, 1–9 (2012).

    Article  Google Scholar 

  16. 16

    Stegman, D. R., Jellinek, A. M., Zatman, S. A., Baumgardner, J. R. & Richards, M. A. An early lunar core dynamo driven by thermochemical mantle convection. Nature 421, 143–146 (2003).

    Article  Google Scholar 

  17. 17

    Dickey, J. O. et al. Lunar laser ranging: A continuing legacy of the Apollo program. Science 265, 482–490 (1994).

    Article  Google Scholar 

  18. 18

    Weber, R. C., Lin, P-Y., Garnero, E. J., Williams, Q. & Lognonné, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    Article  Google Scholar 

  19. 19

    Van Kan Parker, M. et al. Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nature Geosci. 5, 186–189 (2012).

    Article  Google Scholar 

  20. 20

    Kamata, S., Sugita, S. & Abe, Y. A new spectral calculation scheme for long-term deformation of Maxwellian planetary bodies. J. Geophys. Res. 117, E02004 (2012).

    Article  Google Scholar 

  21. 21

    Moore, W. B. Tidal heating and convection in Io. J. Geophys. Res. 108, 5096 (2003).

    Article  Google Scholar 

  22. 22

    Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S. & Lognonné, P. Very preliminary reference Moon model. Phys. Earth Planet. Inter 188, 96–113 (2011).

    Article  Google Scholar 

  23. 23

    Spohn, T., Konrad, W., Breuer, D. & Ziethe, R. The longevity of lunar volcanism: Implications of thermal evolution calculations with 2D and 3D mantle convection models. Icarus 149, 54–65 (2001).

    Article  Google Scholar 

  24. 24

    Renner, J., Evans, B. & Hirth, G. On the rheologically critical melt fraction. Earth Planet. Sci. Lett. 181, 585–594 (2000).

    Article  Google Scholar 

  25. 25

    Moore, W. B. The thermal state of Io. Icarus 154, 548–550 (2001).

    Article  Google Scholar 

  26. 26

    Lainey, V., Arlot, J. E., Karatekin, Ö. & Van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).

    Article  Google Scholar 

  27. 27

    Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).

    Article  Google Scholar 

  28. 28

    Zhong, S. J., Parmentier, E. M. & Zuber, M. T. A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet. Sci. Lett. 177, 131–140 (2000).

    Article  Google Scholar 

  29. 29

    Sugano, T. & Heki, K. Isostasy of the Moon from high-resolution gravity and topography data: Implication for its thermal history. Geophys. Res. Lett. 31, L24703 (2004).

    Article  Google Scholar 

  30. 30

    Namiki, N. et al. Farside gravity field of the Moon from four-way Doppler measurements of SELENE (Kaguya). Science 323, 900–905 (2009).

    Article  Google Scholar 

Download references


We thank Y. Abe, K. Heki, S. Honda, H. Hussmann, S. Kamata, S. Karato, M. Nakada, F. Nimmo, E. Ohtani, G. Schubert, H. Shimizu, T. Spohn, L. Xiao, D. Zhao and S. Zhong for critical discussions and W. Moore for a helpful review. Y.H. was financially supported by China Postdoctoral Science Foundation, Chinese Academy of Sciences and National Natural Science Foundation of China.

Author information




Y.H. designed the study and performed the analysis. Y.H. and S.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yuji Harada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harada, Y., Goossens, S., Matsumoto, K. et al. Strong tidal heating in an ultralow-viscosity zone at the core–mantle boundary of the Moon. Nature Geosci 7, 569–572 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing