Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

The Indonesian seas and their role in the coupled ocean–climate system

Abstract

The Indonesian seas represent the only pathway that connects different ocean basins in the tropics, and therefore play a pivotal role in the coupled ocean and climate system. Here, water flows from the Pacific to the Indian Ocean through a series of narrow straits. The throughflow is characterized by strong velocities at water depths of about 100 m, with more minor contributions from surface flow than previously thought. A synthesis of observational data and model simulations indicates that the temperature, salinity and velocity depth profiles of the Indonesian throughflow are determined by intense vertical mixing within the Indonesian seas. This mixing results in the net upwelling of thermocline water in the Indonesian seas, which in turn lowers sea surface temperatures in this region by about 0.5 °C, with implications for precipitation and air–sea heat flux. Moreover, the depth and velocity of the core of the Indonesian throughflow has varied with the El Niño/Southern Oscillation and Indian Ocean Dipole on interannual to decadal timescales. Specifically, the throughflow slows and shoals during El Niño events. Changes in the Indonesian throughflow alter surface and subsurface heat content and sea level in the Indian Ocean between 10 and 15° S. We conclude that inter-ocean exchange through the Indonesian seas serves as a feedback modulating the regional precipitation and wind patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bathymetric and geographic features of the Indonesian seas.
Figure 2: Changes in temperature and salinity as the Pacific inflow water traverses the regional Indonesia seas.
Figure 3: Changes in tropical Indo-Pacific mean climate from models with and without tidal mixing parameterizations.
Figure 4: Time series of the depth of the maximum along-channel velocity (m s−1) within the Makassar Strait13.

Similar content being viewed by others

References

  1. Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046 (1986).

    Article  Google Scholar 

  2. Godfrey, J. S. The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res. 101, 12217–12237 (1996).

    Article  Google Scholar 

  3. Lee, T., Fukumori, I., Menemenlis, D., Xing, Z. & Fu, L. L. Effects of the Indonesian Throughflow on the Pacific and Indian Oceans. J. Phys. Oceanogr. 32, 1404–1429 (2002).

    Article  Google Scholar 

  4. Vranes, K., Gordon, A. L. & Ffield, A. The heat transport of the Indonesian throughflow and implications for the Indian Ocean Heat Budget. Deep-Sea Res. 49, 1391–1410 (2002).

    Google Scholar 

  5. Potemra, J. T. & Schneider, N. Influence of low-frequency Indonesian throughflow transport on temperatures in the Indian Ocean in a coupled model. J. Clim. 20, 1439–1452 (2007).

    Article  Google Scholar 

  6. McCreary, J. P. et al. Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Progr. Oceanogr. 75, 70–114 (2007).

    Article  Google Scholar 

  7. Song, Q., Gordon, A. L. & Visbeck, M. Spreading of the Indonesian Throughflow in the Indian Ocean. J. Phys. Oceanogr. 34, 772–792 (2004).

    Article  Google Scholar 

  8. Meyers, G., McIntosh, P., Pigot, L & Pook, M. The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Clim. 20, 2872–2880 (2007).

    Article  Google Scholar 

  9. Annamalai, H., Kida, S. & Hafner, J. Potential impact of the tropical Indian Ocean – Indonesian Seas on El Niño characteristics. J. Clim. 23, 3933–3952 (2010).

    Article  Google Scholar 

  10. Wyrtki, K. Physical Oceanography of the Southeast Asian Waters (Scripps Institution of Oceanography NAGA Report 2, 1961).

    Google Scholar 

  11. Gordon, A. L., Susanto, R. D., Ffield A., Huber, B. A., Pranowo, W. & Wirasantosa, S. Makassar Strait Throughflow, 2004 to 2006. Geophys. Res. Lett. 35, L24605 (2008).

    Article  Google Scholar 

  12. Sprintall, J., Wijffels, S. E., Molcard, R. & Jaya, I. Direct estimates of the Indonesian Throughflow entering the Indian Ocean. J. Geophys. Res. 114, C07001 (2009).

    Article  Google Scholar 

  13. Gordon, A. L., Huber, B. A., Metzger, E. J., Susanto, R. D., Hurlburt, H. E. & Adi, T. R. South China Sea Throughflow impact on the Indonesian Throughflow. Geophys. Res. Lett. 39, L11602 (2012).

    Article  Google Scholar 

  14. Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T., Bessieres, L. & Molcard, R. On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys. Res. Lett. 34, L04604 (2007).

    Article  Google Scholar 

  15. Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G. & Masson, S. Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim. Dynam. 34, 891–904 (2010).

    Article  Google Scholar 

  16. Wajsowicz, R. Air–sea interaction over the Indian Ocean due to variations in the Indonesian Throughflow. Clim. Dynam. 18, 437–453 (2002).

    Article  Google Scholar 

  17. Song Q. & Gordon, A. L. Significance of the vertical profile of the Indonesian Throughflow transport on the Indian Ocean. Geophys. Res. Lett. 31, L16307 (2004).

    Article  Google Scholar 

  18. Santoso A., Cai, W., England, M. H. & Phipps, S. J. The role of the Indonesian Throughflow on ENSO dynamics in a coupled climate model. J. Clim. 24, 585–601 (2011).

    Article  Google Scholar 

  19. Schneider, N. The Indonesian throughflow and the global climate system. J. Clim. 11, 676–689 (1998).

    Article  Google Scholar 

  20. Gordon, A.L & Fine, R. Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature 379, 146–149 (1996).

    Article  Google Scholar 

  21. Van Aken, H. M., Brodjonegoro, I. S. & Jaya, I. The deepwater motion through the Lifamatola Passage and its contribution to the Indonesian Throughflow. Deep-Sea Res. 53, 1203–1216 (2009).

    Article  Google Scholar 

  22. Gordon, A. L. et al. The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dynam. Atmos. Oceans 50, 115–128 (2010).

    Article  Google Scholar 

  23. Gordon, A. L. et al. Advection and diffusion of Indonesian Throughflow water within the Indian Ocean South Equatorial Current. Geophys. Res. Lett. 24, 2573–2576 (1997).

    Article  Google Scholar 

  24. Talley, L. D. & Sprintall, J. Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. J. Geophys. Res. 110, C10009 (2005).

    Article  Google Scholar 

  25. Ffield, A. & Gordon, A. L. Tidal mixing signatures in the Indonesian Seas. J. Phys. Oceanogr. 26, 1924–1937 (1996).

    Article  Google Scholar 

  26. Koch-Larrouy A., Madec, G., Iudicone, D., Molcard, R. & Atmadipoera, A. Physical processes contributing in the water mass transformation of the Indonesian ThroughFlow. Ocean Dynam. 58, 275–288 (2008).

    Article  Google Scholar 

  27. Koch-Larrouy A., Madec, G., Blanke, B. & Molcard, R. Quantification of the water paths and exchanges in the Indonesian archipelago. Ocean Dynam. 58, 289–309 (2008).

    Article  Google Scholar 

  28. Ffield, A. & Robertson, R. Indonesian Seas finestructure variability. Oceanography 18, 108–111 (2005).

    Article  Google Scholar 

  29. Kida, S. & Wijffels, S. E. The impact of the Indonesian throughflow and tidal mixing on the summertime sea surface temperature in the western Indonesian seas. J. Geophys. Res. 117, C09007 (2012).

    Article  Google Scholar 

  30. Jochum, M. & Potemra, J. T. Sensitivity of tropical rainfall to Banda Sea diffusivity in the Community Climate System Model. J. Clim. 21, 6445–6454 (2008).

    Article  Google Scholar 

  31. Drushka, K., Sprintall, J. & Gille, S. T. Vertical structure of Kelvin waves in the Indonesian Throughflow exit passages. J. Phys. Oceanogr. 40, 1965–1987 (2010).

    Article  Google Scholar 

  32. Pujiana, K., Gordon, A. L. & Sprintall, J. Intraseasonal Kelvin waves in Makassar Strait. J. Geophys. Res. 118, 2023–2034 (2013).

    Article  Google Scholar 

  33. Wyrtki, K. Indonesian Throughflow and the associated pressure gradient. J. Geophys. Res. 92, 12941–12946 (1987).

    Article  Google Scholar 

  34. Gordon A. L., Susanto, R. D. & Ffield, A. Throughflow within Makassar Strait. Geophys. Res. Lett. 26, 3325–3328 (1999).

    Article  Google Scholar 

  35. Ffield, A., Vranes, K., Gordon, A. L., Susanto, R. D. & Garzoli, S. L. Temperature variability within Makassar Strait. Geophys. Res. Lett. 27, 237–240 (2000).

    Article  Google Scholar 

  36. Sprintall, J. & Révelard, A. The Indonesian Throughflow response to Indo-Pacific climate variability. J. Geophys. Res. 119, 1161–1175 (2014).

    Article  Google Scholar 

  37. Wijffels, S. E. & Meyers, G. An intersection of oceanic wave guides: variability in the Indonesian Throughflow region. J. Phys. Oceanogr. 34, 1232–1253 (2004).

    Article  Google Scholar 

  38. Gordon, A. L., Susanto, R. D. & Vranes, K. Cool Indonesian Throughflow as a consequence of restricted surface layer flow. Nature 425, 824–828 (2003).

    Article  Google Scholar 

  39. Wijffels, S. E., Meyers, G. M. & Godfrey, J. S. A 20-Yr average of the Indonesian Throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr. 38, 1965–1978 (2008).

    Article  Google Scholar 

  40. Vecchi, G. A., Soden, B. J., Wittenberg, A. T., Held, I. M., Leetma, A. & Harrison, M. J. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article  Google Scholar 

  41. Wainwright, L., Meyers, G., Wijffels, S. & L. Pigot, Change in the Indonesian Throughflow with the climatic shift of 1976/77. J. Geophys. Res. 35, L03604 (2008).

    Google Scholar 

  42. Alory, G., Wijffels, S. & Meyers, G. Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett. 34, L02606 (2007).

    Article  Google Scholar 

  43. Han, W. et al. Patterns of Indian Ocean sea-level change in a warming climate. Nature Geosci. 3, 546–550 (2010).

    Article  Google Scholar 

  44. Schwartzkopf, F. U. & Böning, C. W. Contribution of Pacific wind stress to multi-decadal variations in upper-ocean heat content and sea level in the tropical south Indian Ocean. Geophys. Res. Lett. 38, L12602 (2011).

    Google Scholar 

  45. Lee, T. & McPhaden, M. J. Decadal phase changes in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett. 35, L01605 (2008).

    Google Scholar 

  46. Lee, T. et al. Consistency and fidelity of Indonesian-throughflow total volume transport estimated by 14 ocean data assimilation products. Dynam. Atmos. Oceans. 50, 201–223 (2010).

    Article  Google Scholar 

  47. Feng, M., Böning, C. W., Biastoch, A., Behrens, E., Weller, E. & Masumoto, Y. The reversal of the multi-decadal trends of the equatorial Pacific easterly winds, and the Indonesian Throughflow and Leeuwin Current transports. Geophys. Res. Lett. 38, L11604 (2011).

    Article  Google Scholar 

  48. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  49. Tokinaga, H. et al. Regional patterns of tropical Indo-Pacific Climate change: Evidence of the Walker Circulation weakening. J. Clim. 25, 1689–1710 (2012).

    Article  Google Scholar 

  50. Sen Gupta, A., Ganachaud, A., McGregor, S., Brown, J. N. & Muir, L. Drivers of the projected changes to the Pacific Ocean equatorial circulation. Geophys. Res. Lett. 39, L09605 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The material is partially based on work supporting J.S. by the National Aeronautics and Space Administration (NASA) under award no. NNX13AO38G. A.L.G. is supported by NA08OAR4320754 from the National Oceanic and Atmospheric Administration, US Department of Commerce. The research was carried out in part by T.L. at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. S.E.W. was partly funded by the Australian Climate Change Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Sprintall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprintall, J., Gordon, A., Koch-Larrouy, A. et al. The Indonesian seas and their role in the coupled ocean–climate system. Nature Geosci 7, 487–492 (2014). https://doi.org/10.1038/ngeo2188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing