Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


A piece of the deep carbon puzzle

Carbon loss from subducting slabs is thought to be insufficient to balance carbon dioxide emissions at arc volcanoes. Analyses of ancient subducted rocks in Greece suggest that fluid dissolution of slab carbonate can help solve this carbon-cycle conundrum.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: The deep carbon cycle.


  1. Berner, R. A. Am. J. Sci. 291, 339–376 (1991).

    Article  Google Scholar 

  2. Hayes, J. F. & Waldbauer, J. R. Phil. Trans. R. Soc. Lond. B 361, 931–950 (2006).

    Article  Google Scholar 

  3. Dasgupta, R. Rev. Mineral. Geochem. 75, 183–229 (2013).

    Article  Google Scholar 

  4. Hirschmann, M. M. American Geophysical Union Fall Meeting 2011 abstr. V24A-01 (2011).

  5. Ague, J. J. & Nicolescu, S. Nature Geosci. 7, 355–360 (2014).

    Article  Google Scholar 

  6. Plank, T. & Langmuir, C. H. Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  7. Alt, J. C. & Teagle, D. A. H. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    Article  Google Scholar 

  8. Alt, J. C. et al. Earth Planet. Sci. Lett. 327, 50–60 (2012).

    Article  Google Scholar 

  9. Burton, M. R., Sawyer, G. M. & Granieri, D. 75, 323–354 (2013).

  10. Dasgupta, R. & Hirschmann, M. M. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Article  Google Scholar 

  11. Hilton, D. R., Fischer, T. P. & Marty, B. Rev. Mineral. Geochem. 47, 319–370 (2002).

    Article  Google Scholar 

  12. Wallace, P. J. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    Article  Google Scholar 

  13. Jarrard, R. D. Geochem. Geophys. Geosyst. 4, 8905 (2003).

    Article  Google Scholar 

  14. Gorman, P. J., Kerrick, D. M. & Connolly, J. A. D. Geochem. Geophys. Geosyst. 7, Q04007 (2006).

    Article  Google Scholar 

  15. Kerrick, D. M. & Connolly, J. A. D. Nature 411, 293–296 (2001).

    Article  Google Scholar 

  16. Manning, C. E. Earth Planet. Sci. Lett. 223, 1–16 (2004).

    Article  Google Scholar 

  17. Dolejš, D. & Manning, C. E. Geofluids 10, 20–40 (2010).

    Google Scholar 

  18. Facq, S., Daniel, I., Montagnac, G., Cardon, H. & Sverjensky, D. A. Geochim. Cosmochim. Acta 132, 375–390 (2014).

    Article  Google Scholar 

  19. Manning, C. E. Rev. Mineral. Geochem. 76, 135–164 (2013).

    Article  Google Scholar 

  20. Manning, C. E., Shock, E. L. & Sverjensky, D. A. Rev. Mineral. Geochem. 75, 109–148 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Craig E. Manning.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manning, C. A piece of the deep carbon puzzle. Nature Geosci 7, 333–334 (2014).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing