Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon sequestration during the Palaeocene–Eocene Thermal Maximum by an efficient biological pump

Abstract

A perturbation of the carbon cycle and biosphere, linked to globally increased temperatures about 55.9 million years ago, characterized the Palaeocene–Eocene Thermal Maximum. Its effect on global oceanic productivity is controversial. Here we present records of marine barite accumulation rates that show distinct peaks during this time interval, suggesting a general increase in export productivity. We propose that changes in marine ecosystems, resulting from high atmospheric partial pressure of CO2 and ocean acidification, led to enhanced carbon export from the photic zone to depth, thereby increasing the efficiency of the biological pump. Higher seawater temperatures at that time increased bacterial activity and organic matter regeneration. Through this process much of the sinking particulate organic matter was probably converted to dissolved inorganic and organic carbon. We estimate that an annual carbon export flux out of the euphotic zone and into the deep ocean waters could have amounted to about 15 Gt during the Palaeocene–Eocene Thermal Maximum. About 0.4% of this carbon is expected to have entered the refractory dissolved organic pool, where it could be sequestered from the atmosphere for tens of thousands of years. Our estimates are consistent with the amount of carbon redistribution expected for the recovery from the Palaeocene–Eocene Thermal Maximum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Export productivity before and during the PETM.
Figure 2: Barite content and C isotope changes with depth in sampled cores of PETM age.
Figure 3: BARs and δ13C plotted against relative age (in kyr from before or after the base of the CIE).

Similar content being viewed by others

References

  1. Dickens, G. R., O’Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  Google Scholar 

  2. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  3. McInerney, F. A. & Wing, S. L. The Paleocene–Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).

    Article  Google Scholar 

  4. Pagani, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene Thermal Maximum. Nature 442, 671–675 (2006).

    Article  Google Scholar 

  5. Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: A model–data comparison. Geology 36, 315–318 (2008).

    Article  Google Scholar 

  6. Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009).

    Article  Google Scholar 

  7. Röhl, U., Westerhold, T., Bralower, T. J. & Zachos, J. C. On the duration of the Paleocene–Eocene Thermal Maximum (PETM). Geochem. Geophys. Geosyst. 8, Q12002 (2007).

    Article  Google Scholar 

  8. Murphy, B. H., Farley, K. A. & Zachos, J. C. An extraterrestrial 3He-based timescale for the Paleocene–Eocene Thermal Maximum (PETM) from Walvis Ridge, IODP site 1266. Geochim. Cosmochim. Acta 74, 5098–5108 (2010).

    Article  Google Scholar 

  9. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).

    Article  Google Scholar 

  10. Archer, D., Kheshgi, H. & Maier-Reimer, E. Multiple timescales for neutralization of fossil fuel CO2 . Geophys. Res. Lett. 24, 405–408 (1997).

    Article  Google Scholar 

  11. Bowen, G. J. Up in smoke: A role for organic carbon feedbacks in Paleogene hyperthermals. Glob. Planet. Change 109, 18–29 (2013).

    Article  Google Scholar 

  12. Bowen, G. J. & Zachos, J. C. Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum. Nature Geosci. 3, 866–869 (2010).

    Article  Google Scholar 

  13. Paytan, A. & Griffith, E. M. Marine barite: Recorder of variations in ocean export productivity. Deep-Sea Res. Pt II 54, 687–705 (2007).

    Article  Google Scholar 

  14. Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G. & Murray, R. W. A comparison between excess barium and barite as indicators of carbon export. Paleoceanography 18, 1060 (2003).

    Google Scholar 

  15. Gattuso, J-P., Bijma, J., Gehlen, M., Riebesell, U. & Turley, C. in Ocean Acidification: Knowns, Unknowns, and Perspectives (eds Gattuso, J. P. & Hansson, L.) 291–311 (Oxford Univ. Press, 2011).

    Google Scholar 

  16. Riebesell, U. et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450, 545–548 (2007).

    Article  Google Scholar 

  17. Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    Article  Google Scholar 

  18. Bains, S., Norris, R. D., Corfield, R. M. & Faul, K. L. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407, 171–174 (2000).

    Article  Google Scholar 

  19. Torfstein, A., Winckler, G. & Tripati, A. Productivity feedback did not terminate the Paleocene–Eocene Thermal Maximum (PETM). Clim. Past 6, 265–272 (2010).

    Article  Google Scholar 

  20. Bralower, T. J. Evidence of surface water oligotrophy during the Paleocene–Eocene Thermal Maximum: Nannofossil assemblage data from Ocean Drilling Program site 690, Maud Rise, Weddell Sea. Paleoceanography 17, 1023 (2002).

    Google Scholar 

  21. Stoll, H. M., Shimizu, N., Archer, D. & Ziveri, P. Coccolithophore productivity response to greenhouse event of the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett. 258, 192–206 (2007).

    Article  Google Scholar 

  22. Thomas, E. in Late Paleocene–Early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records (eds Aubry, M-P., Lucas, S. G. & Berggren, W. A.) Biostratigraphy of the late Paleocene benthic foraminiferal extinction. 214–243 (Columbia Univ. Press, 1998).

    Google Scholar 

  23. Sluijs, A. & Brinkhuis, H. A dynamic climate and ecosystem state during the Paleocene–Eocene Thermal Maximum: Inferences from dinoflagellate cyst assemblages on the New Jersey Shelf. Biogeosciences 6, 1755–1781 (2009).

    Article  Google Scholar 

  24. Crouch, E. M. et al. Global dinoflagellate event associated with the late Paleocene Thermal Maximum. Geology 29, 315–318 (2001).

    Article  Google Scholar 

  25. Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C. & Bybell, L. M. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene–Eocene Thermal Maximum: Implications for global productivity gradients. Geology 34, 233–236 (2006).

    Article  Google Scholar 

  26. Kelly, D. C., Bralower, T. J., Zachos, J. C., Silva, I. P. & Thomas, E. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP site 865) during the late Paleocene Thermal Maximum. Geology 24, 423–426 (1996).

    Article  Google Scholar 

  27. Thomas, E. Cenozoic mass extinctions in the deep sea: What disturbs the largest habitat on Earth?. Geol. Soc. Am. Spec. Paper 424, 1–23 (2007).

    Google Scholar 

  28. Winguth, A. M. E., Thomas, E. & Winguth, C. Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene–Eocene Thermal Maximum: Implications for the benthic extinction. Geology 40, 63–266 (2012).

    Article  Google Scholar 

  29. Fedorov, A. V., Brierley, C. M. & Emanuel, K. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 463, 1066–1070 (2010).

    Article  Google Scholar 

  30. Kidder, D. L. & Worsley, T. R. Phanerozoic large igneous provinces (LIPs), HEATT (haline euxinic acidic thermal transgression) episodes, and mass extinctions. Palaeogeogr., Palaeoclimatol., Palaeoecol. 295, 162–191 (2010).

    Article  Google Scholar 

  31. Buesseler, K. O. The decoupling of production and particulate export in the surface ocean. Glob. Biogeochem. Cycles 12, 297–310 (1998).

    Article  Google Scholar 

  32. Olivarez Lyle, A. & Lyle, M. W. Missing organic carbon in Eocene marine sediments: Is metabolism the biological feedback that maintains end-member climates?. Paleoceanography 21, PA2007 (2006).

    Article  Google Scholar 

  33. Schneider, B., Engel, A. & Schlitzer, R. Effects of depth and CO2-dependent C:N ratios of particulate organic matter (POM) on the marine carbon cycle. Glob. Biogeochem. Cycles 18, GB2015 (2004).

    Article  Google Scholar 

  34. Liu, J. W., Weinbauer, M. G., Maier, C., Dai, M. H. & Gattuso, J. P. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat. Microb. Ecol. 61, 291–305 (2010).

    Article  Google Scholar 

  35. Hoffmann, L. J., Breitbarth, E., Boyd, P. W. & Hunter, K. A. Influence of ocean warming and acidification on trace metal biogeochemistry. Mar. Ecol. Prog. Ser. 470, 191–205 (2012).

    Article  Google Scholar 

  36. Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).

    Article  Google Scholar 

  37. Passow, U. & Carlson, C. A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).

    Article  Google Scholar 

  38. Riebesell, U. et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450, 545–548 (2007).

    Article  Google Scholar 

  39. De Jesus Mendes, P. A. & Thomsen, L. Effects of ocean acidification on the ballast of surface aggregates sinking through the twilight zone. PloS ONE 7, e50865 (2012).

    Article  Google Scholar 

  40. Gibbs, S. J., Stoll, H. M., Bown, P. R. & Bralower, T. J. Ocean acidification and surface water carbonate production across the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett. 295, 583–592 (2010).

    Article  Google Scholar 

  41. Piontek, J. et al. Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates. Aquat. Microb. Ecol. 54, 305–318 (2009).

    Article  Google Scholar 

  42. Kelly, D. C., Zachos, J. C., Bralower, T. J. & Schellenberg, S. A. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene–Eocene Thermal Maximum. Paleoceanography 20, PA4023 (2005).

    Article  Google Scholar 

  43. Griffith, E. M. & Paytan, A. Barite in the ocean: Occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59, 1817–1835 (2012).

    Article  Google Scholar 

  44. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    Article  Google Scholar 

  45. Dickson, A. J., Cohen, A. S. & Coe, A. L. Seawater oxygenation during the Paleocene–Eocene Thermal Maximum. Geology 40, 639–642 (2012).

    Article  Google Scholar 

  46. Hansell, D. A. Recalcitrant dissolved organic matter fractions. Annu. Rev. Mar. Sci. 5, 421–445 (2013).

    Article  Google Scholar 

  47. Sexton, P. F. et al. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471, 349–352 (2011).

    Article  Google Scholar 

  48. Engel, A. et al. Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: Results from a mesocosm study. J. Plankton Res. 33, 357–372 (2011).

    Article  Google Scholar 

  49. Yamada, N., Tsurushima, N. & Suzumura, M. Effects of CO2-induced seawater acidification on microbial processes involving dissolved organic matter. Energy Procedia 37, 5962–5969 (2013).

    Article  Google Scholar 

  50. Engel, A. et al. CO2 increases 14C-primary production in an Arctic plankton community. Biogeosciences 10, 291–1308 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Samples were provided by the Integrated Ocean Drilling Program. This work was supported by National Science Foundation CAREER grant OCE-0449732 (to A.P.). We thank U. Riebesell and U. Passow for discussion on ocean acidification and the biological pump.

Author information

Authors and Affiliations

Authors

Contributions

A.P., Z.M., E.G., E.T. and J.Z. wrote the manuscript. Z.M. and E.G. processed the sediment samples for wt% barite, BARs and export production calculations. E.T., B.M. and J.Z. contributed to the age models used for BAR reconstructions. A.P. conceived and coordinated the work and proposed the data interpretation model.

Corresponding author

Correspondence to Adina Paytan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 755 kb)

Supplementary Information

Supplementary Information (XLS 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Gray, E., Thomas, E. et al. Carbon sequestration during the Palaeocene–Eocene Thermal Maximum by an efficient biological pump. Nature Geosci 7, 382–388 (2014). https://doi.org/10.1038/ngeo2139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing