Abstract
Some of Earth’s largest magmatic provinces result from the interaction between mid-ocean ridges and near-ridge hotspots, which are hypothesized to overlie plumes of upwelling mantle. Geodynamic models predict that upwelling plumes are sheared by the motion of the overlying tectonic plates and can connect to a nearby mid-ocean ridge by shallow flow beneath thin, young lithosphere. Here we present seismic tomographic images of the upper 300 km of the mantle beneath the Galápagos Archipelago in the eastern Pacific Ocean. We observe a low-velocity anomaly, indicative of an upwelling plume, that is not deflected in the direction of plate motion. Instead, the anomaly tilts towards the mid-ocean ridge at depths well below the lithosphere. These characteristics of the plume–ridge connection beneath the Galápagos Archipelago are consistent with the presence of multiple stages of partial melting, melt extraction, and melt remixing within the plume and surrounding mantle. These processes affect the viscosity of the asthenosphere, alter the upwelling plume and influence the compositions of surface lavas. Our results imply that the coupling between the oceanic plate and plume upwelling beneath the Galápagos is weak. Multistage melting may similarly affect the geophysical and geochemical characteristics of other hotspots.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Low-volume magmatism linked to flank deformation on Isla Santa Cruz, Galápagos Archipelago, using cosmogenic 3He exposure and 40Ar/39Ar dating of fault scarps and lavas
Bulletin of Volcanology Open Access 04 August 2022
-
Cryptic evolved melts beneath monotonous basaltic shield volcanoes in the Galápagos Archipelago
Nature Communications Open Access 28 July 2020
-
Imaging the Galápagos mantle plume with an unconventional application of floating seismometers
Scientific Reports Open Access 04 February 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).
Wolfe, C. J., Bjarnason, I. T., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).
Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004).
Wolfe, C. J. et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326, 1388–1390 (2009).
Schmandt, B., Dueker, K., Humphreys, E. & Hansen, S. Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet. Sci. Lett. 331–332, 224–236 (2012).
Ribe, N. M. & Christensen, U. R. Three-dimensional modeling of plume–lithosphere interaction. J. Geophys. Res. 99, 669–682 (1994).
Ribe, N. M. The dynamics of plume–ridge interaction 2. Off-ridge plumes. J. Geophys. Res. 101, 16195–16204 (1996).
Feighner, M. A. & Richards, M. A. The fluid dynamics of plume–ridge and plume-plate interactions: An experimental investigation. Earth Planet. Sci. Lett. 129, 171–182 (1995).
Ito, G., Lin, J. & Graham, D. Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction. Rev. Geophys. 41, 1017 (2003).
Wilson, D. S. & Hey, R. N. History of rift propagation and magnetization intensity for the Cocos-Nazca spreading center. J. Geophys. Res. 100, 10041–10056 (1995).
Mittelstaedt, E. et al. Multiple expressions of plume–ridge interaction in the Galápagos: Volcanic lineaments and ridge jumps. Geochem. Geophys. Geosyst. 13, Q05018 (2012).
Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002).
Morgan, W. J. Rodriguez, Darwin, Amsterdam,..., a second type of hotspot island. J. Geophys. Res. 83, 5355–5360 (1978).
Harpp, K. & Geist, D. Wolf-Darwin lineament and plume–ridge interaction in northern Galápagos. Geochem. Geophys. Geosyst. 3, 8504 (2002).
Schilling, J. G., Kingsley, R. H. & Devine, J. D. Galapagos hot spot-spreading center system 1. Spatial petrological and geochemical variations (83° W–111 °W). J. Geophys. Res. 87, 5593–5610 (1982).
Ito, G. T. & Lin, J. Mantle temperature anomalies along the past and paleoaxes of the Galápagos spreading center as inferred from gravity analyses. J. Geophys. Res. 100, 3733–3745 (1995).
Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galapagos Spreading Center and the compensation of the Galapagos hotspot swell. Earth Planet. Sci. Lett. 203, 311–327 (2002).
Detrick, R. S. et al. Correlated geophysical, geochemical, and volcanological manifestations of plume–ridge interaction along the Galápagos Spreading Center. Geochem. Geophys. Geosyst. 3, 8501 (2002).
Schilling, J., Fontignie, D., Blichert-Toft, J., Kingsley, R. & Tomza, U. Pb–Hf–Nd–Sr isotope variations along the Galápagos Spreading Center (101–83 W): Constraints on the dispersal of the Galápagos mantle plume. Geochem. Geophys. Geosyst. 4, 8512 (2003).
Ingle, S. et al. Mechanisms of geochemical and geophysical variations along the western Galápagos Spreading Center. Geochem. Geophys. Geosyst. 11, Q04003 (2010).
Shorttle, O., Maclennan, J. & Jones, S. M. Control of the symmetry of plume–ridge interaction by spreading ridge geometry. Geochem. Geophys. Geosyst. 11, Q0AC05 (2010).
Villagómez, D., Toomey, D. R., Hooft, E. E. E. & Solomon, S. C. Upper mantle structure beneath the Galápagos Archipelago from surface wave tomography. J. Geophys. Res. 112, B07303 (2007).
Hooft, E. E. E., Toomey, D. R. & Solomon, S. C. Anomalously thin transition zone beneath the Galápagos hotspot. Earth Planet. Sci. Lett. 216, 55–64 (2003).
Villagómez, D. R., Toomey, D. R., Hooft, E. E. E. & Solomon, S. C. Crustal structure beneath the Galápagos Archipelago from ambient noise tomography and its implications for plume–lithosphere interactions. J. Geophys. Res. 116, B04310 (2011).
Kurz, M. D. & Geist, D. Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochim. Cosmochim. Acta 63, 4139–4156 (1999).
Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).
Moore, W. B., Schubert, G. & Tackley, P. Three-dimensional simulations of plume–lithosphere interaction at the Hawaiian Swell. Science 279, 1008–1011 (1998).
Dasgupta, R. & Hirschmann, M. M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440, 659–662 (2006).
Dasgupta, R. et al. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493, 211–215 (2013).
Dasgupta, R., Hirschmann, M. M., McDonough, W. F., Spiegelman, M. & Withers, A. C. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem. Geol. 262, 57–77 (2009).
Hirschmann, M. M. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth. Planet. Sci. 34, 629–653 (2006).
Karato, S-I. Remote sensing of hydrogen in Earth’s mantle. Rev. Mineral. Geochem. 62, 343–375 (2006).
Hall, P. S. & Kincaid, C. Melting, dehydration, and the dynamics of off-axis plume–ridge interaction. Geochem. Geophys. Geosyst. 4, 8510 (2003).
Harpp, K. S. & White, W. M. Tracing a mantle plume: Isotopic and trace element variations of Galápagos seamounts. Geochem. Geophys. Geosyst. 2, 1042 (2001).
Hoernle, K. et al. Existence of complex spatial zonation in the Galápagos plume. Geology 28, 435–438 (2000).
White, W. M., McBirney, A. R. & Duncan, R. A. Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume. J. Geophys. Res. 98, 19533–19563 (1993).
Geist, D. et al. Wolf Volcano, Galapagos Archipelago: Melting and magmatic evolution at the margins of a mantle plume. J. Petrol. 46, 2197–2224 (2005).
Gibson, S. A. & Geist, D. Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos. Earth Planet. Sci. Lett. 300, 275–286 (2010).
Geist, D. J., White, W. M. & McBirney, A. R. Plume-asthenosphere mixing beneath the Galapagos archipelago. Nature 333, 657–660 (1988).
Graham, D. W., Christie, D. M. & Harpp, K. S. Mantle plume helium in submarine basalts from the Galápagos platform. Science 262, 2023–2026 (1993).
Colin, A., Burnard, P. G., Graham, D. W. & Marrocchi, Y. Plume-ridge interaction along the Galapagos Spreading Center: Discerning between gas loss and source effects using neon isotopic compositions and 4He–40Ar–CO2 relative abundances. Geochim. Cosmochim. Acta 75, 1145–1160 (2011).
Hofmann, A. W., Farnetani, C. G., Spiegelman, M. & Class, C. Displaced helium and carbon in the Hawaiian plume. Earth Planet. Sci. Lett. 312, 226–236 (2011).
Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geosci. 4, 831–838 (2011).
Huang, S., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geosci. 4, 874–878 (2011).
Richards, M. A. & Griffiths, R. W. Thermal entrainment by deflected mantle plumes. Nature 342, 900–902 (1989).
Ito, G., Lin, J. & Gable, C. W. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galápagos plume–ridge system. J. Geophys. Res. 102, 15403–15417 (1997).
Hammond, W. C. & Toomey, D. R. Seismic velocity anisotropy and heterogeneity beneath the Mantle Electromagnetic and Tomography Experiment (MELT) region of the East Pacific Rise from analysis of P and S body waves. J. Geophys. Res. 108, 2176 (2003).
Geist, D. J. et al. Submarine Fernandina: Magmatism at the leading edge of the Galápagos hot spot. Geochem. Geophys. Geosyst. 7, Q12007 (2006).
Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).
Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Pub. 42, 313–345 (1989).
Acknowledgements
We thank Minard Hall of the Instituto Geofı´sico of the Escuela Politécnica Nacional in Quito, the Charles Darwin Research Station, and the Parque Nacional Galápagos for logistical support and assistance in the field. M. Jackson provided constructive comments that improved this paper. This research was supported by the National Science Foundation under grants OCE-9908695, OCE-0221549, and EAR-0651123 to the University of Oregon, OCE-0221634 to the Carnegie Institution of Washington, and EAR-11452711 to the University of Idaho.
Author information
Authors and Affiliations
Contributions
D.R.V., D.R.T. and D.J.G. wrote the initial manuscript. D.R.V., D.R.T., E.E.E.H. and S.C.S. contributed to experiment design and collection of seismic data. D.R.V., D.R.T. and E.E.E.H. contributed to the analysis of seismic data and methods development. D.J.G. contributed to the petrologic calculations and to the development of geochemical models. All authors discussed the results and their implications and assisted in the final revisions to the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2748 kb)
Rights and permissions
About this article
Cite this article
Villagómez, D., Toomey, D., Geist, D. et al. Mantle flow and multistage melting beneath the Galápagos hotspot revealed by seismic imaging. Nature Geosci 7, 151–156 (2014). https://doi.org/10.1038/ngeo2062
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2062
This article is cited by
-
Low-volume magmatism linked to flank deformation on Isla Santa Cruz, Galápagos Archipelago, using cosmogenic 3He exposure and 40Ar/39Ar dating of fault scarps and lavas
Bulletin of Volcanology (2022)
-
Cryptic evolved melts beneath monotonous basaltic shield volcanoes in the Galápagos Archipelago
Nature Communications (2020)
-
Imaging the Galápagos mantle plume with an unconventional application of floating seismometers
Scientific Reports (2019)
-
Oxygen isotope compositions of lavas from the Galapagos archipelago: geochemical contributions from modern crustal sources
Contributions to Mineralogy and Petrology (2019)
-
The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes
Contributions to Mineralogy and Petrology (2015)