Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes

Abstract

Forecasting of volcanic eruptions is still inadequate, despite technological advances in volcano monitoring. Improved forecasting requires a deeper understanding of when unrest will lead to an actual eruption. Shallow, long-period seismic events often precede volcanic eruptions and are used in forecasting. They are thought to be generated by resonance in fluid-filled cracks or conduits, indicating the presence of near-surface magmatic fluids. Here we analyse very-high-resolution seismic data from three active volcanoes—Mount Etna in Italy, Turrialba Volcano in Costa Rica and Ubinas Volcano in Peru—measured between 2004 and 2009. We find that seismic resonance is dependent on the wave propagation path and that the sources for the long-period seismic waves are composed of short pulses. We use a numerical model to show that slow-rupture failure in unconsolidated volcanic materials can reproduce all key aspects of these observations. Therefore, contrary to current interpretations, we suggest that short-duration long-period events are not direct indicators of fluid presence and migration, but rather are markers of deformation in the upper volcanic edifice. We suggest that long-period volcano seismicity forms part of the spectrum between slow-slip earthquakes and fast dynamic rupture, as has been observed in non-volcanic environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Illustration of short-duration long-period events and strong propagation path effects.
Figure 2: Scaling of long-period seismic moment magnitude versus corner frequency.
Figure 3: 2D molecular dynamic simulations of rupture propagation.
Figure 4: Simulated seismicity in a weak volcanic upper edifice.

References

  1. McNutt, S. R. Volcanic seismology. Annu. Rev. Earth Planet. Sci. 32, 461–491 (2005).

    Article  Google Scholar 

  2. Wassermann, J. in IASPEI New Manual of Seismological Observatory Practice (NMSOP) Vol. 1 (ed. Bormann, P.) (GeoForschungsZentrum Potsdam, 2002).

    Google Scholar 

  3. Chouet, B. & Julian, B. R. Dynamic of an expanding fluid-filled crack. J. Geophys. Res. 90, 11187–11198 (1985).

    Article  Google Scholar 

  4. Chouet, B. A. in Volcanic Seismology (eds Gasparini, P., Scarpa, R. & Aki, K.) 133–156 (Springer, 1992).

    Book  Google Scholar 

  5. Neuberg, J., Luckett, R., Baptie, V. & Olsen, K. Models of tremor and low-frequency earthquake swarms on Montserrat. J. Volcanol. Geotherm. Res. 101, 83–104 (2000).

    Article  Google Scholar 

  6. Jousset, P., Neuberg, J. & Sturton, S. Modelling the time-dependent frequency content of low-frequency volcanic earthquakes. J. Volcanol. Geotherm. Res. 128, 201–223 (2003).

    Article  Google Scholar 

  7. Chouet, B. A. Long-period volcano seismicity: Its source and use in eruption forecasting. Nature 380, 309–316 (1996).

    Article  Google Scholar 

  8. Nakano, M., Kumagai, H. & Chouet, B. A. Source mechanism of long-period events at Kusatsu-Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions. J. Volcanol. Geotherm. Res. 122, 149–164 (2003).

    Article  Google Scholar 

  9. Matsubara, W. et al. Distribution and characteristics in waveforms and spectrum of seismic events associated with the 2000 eruption of Mt. Usu. Earth Planet. Sci. Lett. 136, 141–158 (2004).

    Google Scholar 

  10. Lokmer, I., Saccorotti, G., Di Lieto, B. & Bean, C. J. Temporal evolution of long-period seismicity at Etna Volcano, Italy, and its relationships with the 2004–2005 eruption. Earth Planet. Sci. Lett. 266, 141–158 (2008).

    Article  Google Scholar 

  11. Bean, C. J., Lokmer, I. & O’Brien, G. S. Influence of near-surface volcanic structure on long-period seismic signals and on moment tensor inversions: Simulated examples from Mount Etna. J. Geophys. Res. 113, B08308 (2008).

    Article  Google Scholar 

  12. Tromp, J., Tape, C. & Liu, Q. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160, 195–216 (2005).

    Article  Google Scholar 

  13. De Barros, L. et al. Source geometry from exceptionally high resolution long period event observations at Mt. Etna during the 2008 eruption. Geophys. J. Int. 36, L24305 (2009).

    Google Scholar 

  14. Harrington, R. M. & Brodsky, E. E. Volcanic hybrid earthquakes that are brittle-failure events. Geophys. Res. Lett. 34, L06308 (2007).

    Article  Google Scholar 

  15. O’Brien, G. S. et al. Time reverse location of seismic long-period events recorded on Mt Etna. Geophys. J. Int. 184, 452–462 (2011).

    Article  Google Scholar 

  16. De Barros, L. et al. Source Mechanism of Long Period events recorded by a high density seismic network during the 2008 eruption on Mt Etna. J. Geophys. Res. 116, B01304 (2011).

    Article  Google Scholar 

  17. Benson, P. M., Vinciguerra, S., Meredith, P. G. & Young, R. P. Laboratory simulation of volcano seismicity. Science 322, 249–252 (2008).

    Article  Google Scholar 

  18. Burlini, L. et al. Seismicity preceding volcanic eruptions: New experimental insights. Geology 35, 183–186 (2007).

    Article  Google Scholar 

  19. Harrington, R. M. & Benson, P. M. Analysis of lab simulations of volcanic hybrid earthquakes using empirical Green’s functions. J. Geophys. Res. 116, B11303 (2011).

    Article  Google Scholar 

  20. Kanamori, H. & Rivera, L. Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop. Bull. Seismol. Soc. Am. 94, 314–319 (2004).

    Article  Google Scholar 

  21. Solaro, G. et al. Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna. J. Geophys. Res. 115, B10405 (2010).

    Article  Google Scholar 

  22. Neri, M. et al. The changing face of Mount Etna’s summit area documented with Lidar technology. Geophys. Res. Lett. 35, L09305 (2008).

    Article  Google Scholar 

  23. Gil-Cruz, F. & Chouet, B. A. Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991. J. Volcanol. Geotherm. Res. 77, 121–158 (1997).

    Article  Google Scholar 

  24. Arciniega-Ceballos, A., Valdes-Gonzalez, C. & Dawson, P. Temporal and spectral characteristics of seismicity observed at Popocatepetl volcano, central Mexico. J. Volcanol. Geotherm. Res. 102, 207–216 (2000).

    Article  Google Scholar 

  25. Saccorotti, G. et al. Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei Caldera, Italy. Phys. Earth Planet. Int. 165, 14–24 (2007).

    Article  Google Scholar 

  26. De Luca, G., Scarpa, R., Del Pezzo, E. & Simini, M. Shallow structure of Mt. Vesuvius Volcano, Italy, from seismic array analysis. Geophys. Res. Lett. 24, 481–484 (1997).

    Article  Google Scholar 

  27. Chouet, B. A. et al. Shallow velocity structure of Stromboli volcano, Italy, derived from small-aperture array measurements of Strombolian tremor. Bull. Seismol. Soc. Am. 88, 653–666 (1998).

    Google Scholar 

  28. Ferrazzini, V., Aki, K. & Chouet, B. A. Characteristics of seismic waves composing hawaiian volcanic tremor and gas-piston events observed by a near-source array. J. Geophys. Res. 96, 6199–6209 (1991).

    Article  Google Scholar 

  29. Mora, M. M. et al. Shallow velocity structure and seismic site effects at Arenal volcano, Costa Rica. J. Volcanol. Geotherm. Res. 152, 121–139 (2006).

    Article  Google Scholar 

  30. Broberg, K. B. Differences between Mode I and Mode II crack propagation. Pure Appl. Geophys. 163, 1867–1879 (2006).

    Article  Google Scholar 

  31. Abraham, F. F. & Gao, H. How fast can cracks propagate? Phys. Rev. Lett. 84, 3113–3116 (2000).

    Article  Google Scholar 

  32. O’Brien, G. S. & Bean, C. J. A 3D discrete numerical elastic lattice method for seismic wave propagation in heterogeneous media with topography. Geophys. Res. Lett. 31, L14608 (2004).

    Article  Google Scholar 

  33. Apuani, T., Corazzato, C., Cancelli, A. & Tibaldi, A. Physical and mechanical properties of rock masses at Stromboli: A dataset for volcano instability evaluation. Bull. Eng. Geol. Environ. 64, 419–431 (2005).

    Article  Google Scholar 

  34. Sato, T. A note on body wave radiation for expanding tension crack. Sci. Rep. Tohoku Univ. Ser. 5, Geophys. 25, 1–10 (1978).

    Google Scholar 

  35. Peng, Z. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geosci. 3, 599–607 (2010).

    Article  Google Scholar 

  36. Rubin, A. Episodic slow slip events and rate-and-state friction. J. Geophys. Res. 113, B11414 (2008).

    Article  Google Scholar 

  37. Madariaga, R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 3, 639–666 (1976).

    Google Scholar 

  38. Amitrano, D. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationships with the b value. J. Geophys. Res. 108, 2044–2059 (2003).

    Article  Google Scholar 

  39. Collins, B. D. & Sitar, N. Geotechnical Properties of Cemented Sands in Steep Slopes. J. Geotech. Geoenviron. Eng. 135, 43–51 (2009).

    Article  Google Scholar 

  40. Sakuma, S., Kajiwara, T., Nakada, S., Uto, K. & Shimizu, H. Drilling and logging results of USDP-4—Penetration into the volcanic conduit of Unzen Volcano, Japan. J. Volcanol. Geotherm. Res. 175, 1–12 (2009).

    Article  Google Scholar 

  41. Brantut, N., Schubnel, A. & Guéguen, Y. Damage and rupture dynamics at the brittle-ductile transition: The case of gypsum. J. Geophys. Res. 116, B01404 (2011).

    Google Scholar 

  42. McNutt, S. R. in Encyclopedia of Volcanoes (eds Sigurdsson, H. et al.) 1095–1119 (Academic, 2000).

    Google Scholar 

  43. Sparks, R. S. J., Biggs, J. & Neuberg, J. W. Montoring volcanoes. Science 335, 1310–1311 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Science Foundation Ireland (SFI) and the European Commission, and computational support from the Irish Centre for High End Computing (ICHEC), are acknowledged. We are grateful to M. Mora, J. Pacheco, F. Martini and G. Soto (Costa Rica), O. Macedo and A. Inza (IGP-Peru). M. Möllhoff, D. Patanè (D.P.) and INGV staff (Italy) for field campaign support and D.P. for feedback on an early manuscript. D. Amitrano is gratefully acknowledged for application of his damage mechanics code and A. Braiden for assistance with drafting the manuscript. T. Eyre is thanked for Supplementary Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

C.J.B. initiated the concepts, analysed synthetic seismicity data and wrote the manuscript. L.d.B. analysed the seismic data and, with I.L., helped develop the concepts. J-P.M. provided data and intellectual input. G.O’B. carried out rupture modelling and S.M. made contributions on source modelling.

Corresponding authors

Correspondence to Christopher J. Bean or Louis De Barros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 380 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bean, C., De Barros, L., Lokmer, I. et al. Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes. Nature Geosci 7, 71–75 (2014). https://doi.org/10.1038/ngeo2027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing