All known forms of life require phosphorus, and biological processes strongly influence the global phosphorus cycle1. Although the record of life on Earth extends back to 3.8 billion years ago2 and the advent of biological phosphate processing can be tracked to at least 3.5 billion years ago3, the earliest known P-rich deposits appeared only 2 billion years ago4,5. The onset of P deposition has been attributed to the rise of atmospheric oxygen 2.4–2.3 billion years ago and the related profound biogeochemical shifts6,7,8,9, which increased the riverine input of phosphate to the ocean and boosted biological productivity and phosphogenesis5,10. However, the P-rich deposits post-date the rise of oxygen by about 300 million years. Here we use microfabric, trace element and carbon isotope analyses to assess the environmental setting and redox conditions of the 2-billion-year-old P-rich deposits of the vent- or seep-influenced Zaonega Formation, northwest Russia. We identify phosphatized microorganism fossils that resemble modern methanotrophic archaea and sulphur-oxidizing bacteria, analogous to organisms found in modern seep settings and upwelling zones with a sharp redoxcline11,12. We therefore propose that the P-rich deposits in the Zaonega Formation were formed by phosphogenesis mediated by sulphur bacteria, similar to modern sites13, and by the precipitation of calcium phosphate minerals on microbial templates during early diagenesis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci. Rev. 40, 55–124 (1996).

  2. 2.

    C-13-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999).

  3. 3.

    , & Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029–1039 (2010).

  4. 4.

    et al. Emergence of the modern earth system during the archean-proterozoic transition. GSA Today 15, 4–11 (2005).

  5. 5.

    Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology 10, 165–181 (2010).

  6. 6.

    The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006).

  7. 7.

    et al. Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga. Precambrian Res. 192–195, 78–88 (2012).

  8. 8.

    & Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996).

  9. 9.

    et al. Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science 334, 1694–1696 (2011).

  10. 10.

    & Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317, 295–304 (2012).

  11. 11.

    et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495 (1999).

  12. 12.

    , , & Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ. Microbiol. 7, 1451–1460 (2005).

  13. 13.

    & Large sulfur bacteria and the formation of phosphorite. Science 307, 416–418 (2005).

  14. 14.

    & Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: Preliminary report. Geology 11, 267–269 (1983).

  15. 15.

    , , & Microbial sequestration of phosphorus in anoxic upwelling sediments. Nature Geosci. 3, 557–561 (2010).

  16. 16.

    et al. Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth Planet. Sci. Lett. 228, 439–449 (2004).

  17. 17.

    , & Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield). Earth Planet. Sci. Lett. 170, 447–461 (1999).

  18. 18.

    , , , & Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35, 655–658 (2007).

  19. 19.

    , , & Methanotrophy in a Paleoproterozoic oil field ecosystem, Zaonega Formation, Karelia, Russia. Geobiology 10, 467–478 (2012).

  20. 20.

    et al. Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem. Geol. (2013).

  21. 21.

    et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

  22. 22.

    et al. Mineral-templated growth of natural graphite films. Geochim. Cosmochim. Acta 83, 252–262 (2012).

  23. 23.

    , & in Proc. SPIE Instruments, Methods, and Missions for Astrobiology XVol. 6694 (eds Hoover, R. B., Levin, G. V., Rozanov, A. Y. & Davies, P. C. W.) 669409 (SPIE, 2007).

  24. 24.

    et al. Biological processes and apatite formation in sedimentary environments. Eclogae. Geologicae. Helvetiae. 87, 701–745 (1994).

  25. 25.

    & Genesis of apatite in phosphate stromatolites. Eur. J. Mineral. 13, 361–376 (2001).

  26. 26.

    , , , & Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).

  27. 27.

    , , , & Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445, 198–201 (2007).

  28. 28.

    , , & Rare helical spheroidal fossils from the Doushantuo Lagerstatte: Ediacaran animal embryos come of age? Geology 35, 115–118 (2007).

  29. 29.

    et al. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proc. R. Soc. B 279, 2369–2376 (2012).

  30. 30.

    , & in Biosphere Origin and Evolution (eds Dobretsov, N., Kolchanov, N., Rozanov, A. & Zavarzin, G.) 169–188 (Springer, 2008).

Download references


This study was undertaken in the frame of the FAR-DEEP and was supported by the International Continental Drilling Program, Geological Survey of Norway, Centre for Geobiology of Bergen University, Norwegian Research Council grant 191530/V30, Estonian Science Foundation grants ESF8774 and SF0180069S08 and Natural Environment Research Council grant NE/G00398X/1. We thank V. A. Melezhik for coordinating the FAR-DEEP, M. Mesli for managing the FAR-DEEP sample archive and L. Kump for providing unpublished carbon isotope data on FAR-DEEP core 13A.

Author information

Author notes

    • Adam P. Martin

    Present address: GNS Science, Private Bag 1930, 9054 Dunedin, New Zealand


  1. Geological Survey of Norway, 7491 Trondheim, Norway

    • Aivo Lepland
    •  & Alenka E. Črne
  2. Tallinn University of Technology, Institute of Geology, 19086 Tallinn, Estonia

    • Aivo Lepland
  3. Centre for Arctic Gas Hydrate, Environment and Climate, University of Tromsø, 9037 Tromsø, Norway

    • Aivo Lepland
  4. University of Tartu, Department of Geology, 50411 Tartu, Estonia

    • Lauri Joosu
    • , Kalle Kirsimäe
    • , Peeter Somelar
    • , Kärt Üpraus
    •  & Kaarel Mänd
  5. Department of Earth and Environmental Sciences, University of St Andrews, St Andrews, KY16 9AL Scotland, UK

    • Anthony R. Prave
  6. Institute of Geology, Karelian Science Centre, Pushkinskaya 11, 185610 Petrozavodsk, Russia

    • Alexander E. Romashkin
  7. Ivan Rakovec Institute of Paleontology, ZRC SAZU, SI-1000 Ljubljana, Slovenia

    • Alenka E. Črne
  8. NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK

    • Adam P. Martin
    •  & Nick M. W. Roberts
  9. Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF Scotland, UK

    • Anthony E. Fallick
  10. Géobiosphère Actuelle et Primitive, Institut de Physique du Globe de Paris– Sorbonne-Paris Cité, Université Paris Diderot, UMR 7154, CNRS, 1 rue Jussieu, 75238 Paris cedex 5, France

    • Mark A. van Zuilen
  11. GeoForschungsZentrum Potsdam, Telegrafenberg, Chemistry and Physics of Earth Materials, D-14473 Potsdam, Germany

    • Richard Wirth
    •  & Anja Schreiber


  1. Search for Aivo Lepland in:

  2. Search for Lauri Joosu in:

  3. Search for Kalle Kirsimäe in:

  4. Search for Anthony R. Prave in:

  5. Search for Alexander E. Romashkin in:

  6. Search for Alenka E. Črne in:

  7. Search for Adam P. Martin in:

  8. Search for Anthony E. Fallick in:

  9. Search for Peeter Somelar in:

  10. Search for Kärt Üpraus in:

  11. Search for Kaarel Mänd in:

  12. Search for Nick M. W. Roberts in:

  13. Search for Mark A. van Zuilen in:

  14. Search for Richard Wirth in:

  15. Search for Anja Schreiber in:


A.L. and K.K. conceived the study; A.E.R., A.L., L.J., A.R.P., A.E.Č. and A.P.M. carried out field work and sample collection; L.J., K.K., P.S., K.Ü., K.M., N.M.W.R., A.P.M. and A.L. carried out mineralogic, petrographic geochemical analyses; A.E.F. and L.J. carried out carbon isotope analyses, R.W., M.A.v.Z., A.S., L.J., K.M. and A.L. carried out TEM analyses. All authors contributed to the interpretation of results and the writing and editing of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Aivo Lepland.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history





Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing