Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Warming early Mars with CO2 and H2

Abstract

The presence of valleys on ancient terrains of Mars suggests that liquid water flowed on the martian surface 3.8 Gyr ago or before. The above-freezing temperatures required to explain valley formation could have been transient, in response to the frequent large meteorite impacts on early Mars, or they could have been caused by long-lived greenhouse warming. Climate models that consider only the greenhouse gases carbon dioxide and water have been unable to recreate warm surface conditions, given the lower solar luminosity at that time. Here we use a one-dimensional climate model to demonstrate that an atmosphere containing 1.3–4 bar of CO2 and water, in addition to 5–20% H2, could have raised the mean surface temperature of early Mars above the freezing point of water. Vigorous volcanic outgassing from a highly reduced early martian mantle is expected to provide sufficient atmospheric H2 and CO2—the latter from the photochemical oxidation of outgassed CH4 and CO—to form a CO2 and H2 greenhouse. Such a dense early martian atmosphere is consistent with independent estimates of surface pressure based on cratering data.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mean surface temperature as a function of surface pressure for a fully saturated (95% CO2, 5% N2) early Mars atmosphere at different solar insolation levels.
Figure 2: Results of 1D climate model simulations.

References

  1. Carr, M. H. The martian drainage system and the origin of valley networks and fretted channels. J. Geophys. Res. 100, 7479–7507 (1995).

    Article  Google Scholar 

  2. Jakosky, B. M., Haberle, R. M. & Arvidson, R. E. The changing picture of volatiles and climate on Mars. Science 310, 1439–1440 (2005).

    Article  Google Scholar 

  3. Segura, T. L., Toon, O. B., Colaprete, A. & Zahnle, K. Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002).

    Article  Google Scholar 

  4. Segura, T. L., Toon, O. B. & Colaprete, A. Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. 113, E11007 (2008).

    Article  Google Scholar 

  5. Segura, T. L., McKay, C. P. & Toon, O. B. An impact-induced, stable, runaway climate on Mars. Icarus 220, 144–148 (2012).

    Article  Google Scholar 

  6. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

    Article  Google Scholar 

  7. Johnson, S. S., Mischna, M. A., Grove, T. L. & Zuber, M. T. Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. 113, E08005 (2008).

    Google Scholar 

  8. Tian, F. et al. Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2010).

    Article  Google Scholar 

  9. Mischna, M., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res. 118, 1–17 (2013).

    Article  Google Scholar 

  10. Kasting, J. F. CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991).

    Article  Google Scholar 

  11. Wordsworth, R., Forget, F. & Eymet, V. Infrared collision-induced and far-line absorption in dense CO2 atmospheres. Icarus 210, 992–997 (2010).

    Article  Google Scholar 

  12. Forget, F. & Pierrehumbert, R. T. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997).

    Article  Google Scholar 

  13. Wordsworth, R., Forget, F., Millour, E., Head, J. W. & Madeleine, J-B. Charnay, B. Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution. Icarus 222, 1–19 (2013).

    Article  Google Scholar 

  14. Forget, F. et al. 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    Article  Google Scholar 

  15. Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Article  Google Scholar 

  16. Hynek, B. M. & Phillips, R. J. New data reveal mature, integrated drainage systems on Mars indicative of past precipitation. Geology 31, 757–760 (2003).

    Article  Google Scholar 

  17. Barnhart, C. J., Howard, A. D. & Moore, J. M. Long-term precipitation and late-stage valley network formation: Landform simulations of Parana Basin, Mars. J. Geophys. Res. 114, E01003 (2009).

    Google Scholar 

  18. Hoke, M. R. T., Hynek, B. M. & Tucker, G. E. Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312, 1–12 (2011).

    Article  Google Scholar 

  19. Stevenson, D. J. Life-sustaining planets in interstellar space? Nature 400, 32–32 (1999).

    Article  Google Scholar 

  20. Pierrehumbert, R. & Gaidos, E. Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. Lett. 734, L13 (2011).

    Article  Google Scholar 

  21. Wordsworth, R. & Pierrehumbert, R. Hydrogen–nitrogen greenhouse warming in Earth’s early atmosphere. Science 339, 64–67 (2013).

    Article  Google Scholar 

  22. Kasting, J. F. How was early Earth kept warm? Science 339, 44–45 (2013).

    Article  Google Scholar 

  23. Fox, J. L. The production and escape of nitrogen atoms on Mars. J. Geophys. Res. 98, 3297–3310 (1993).

    Article  Google Scholar 

  24. Borysow, A. & Frommhold, L. Theoretical collision-induced rototranslational absorption-spectra for modeling titans atmosphere— H2–N2 pairs. Astrophys. J. 303, 495–510 (1986).

    Article  Google Scholar 

  25. Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the early Earth. Astrobiology 8, 1127–1137 (2008).

    Article  Google Scholar 

  26. Urata, R. A. & Toon, O. B. Simulations of the martian hydrologic cycle with a general circulation model: Implications for the ancient martian climate. Icarus 226, 229–250 (2013).

    Article  Google Scholar 

  27. Kite, E., Williams, J-P., Lucis, A. & Aharonson, O. Constraints on early Mars atmospheric pressure from small ancient craters. American Geophysical Union Conf.http://gps.caltech.edu/~kite/doc/Kite_et_al_AGU_2012.pdf (2012).

  28. Wolf, E. T. & Toon, O. B. Hospitable Archean climates simulated by a general circulation model. Astrobiology 13, 656–673 (2013).

    Article  Google Scholar 

  29. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984) Table 2.6.

    Google Scholar 

  30. Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).

    Article  Google Scholar 

  31. Frost, B. R. in Oxide Minerals: Petrologic and Magmatic Significance Vol. 25 (ed. Lindsley, D. H.) 1–9 (Mineral. Soc. Amer., BookCrafters, 1991).

    Book  Google Scholar 

  32. Holland, H. D. Why the atmosphere became oxygenated: A proposal. Geochim. Cosmochim. Acta 73, 5241–5255 (2009).

    Article  Google Scholar 

  33. Gaillard, F. & Scaillet, B. The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009).

    Article  Google Scholar 

  34. Montesi, L. G. J. & Zuber, M. T. Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability. J. Geophys. Res. 108, 5048 (2003).

    Article  Google Scholar 

  35. Stanley, B. D., Hirschmann, M. M. & Withers, A. C. CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011).

    Article  Google Scholar 

  36. Grott, M., Morschhauser, A., Breuer, D. & Hauber, E. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011).

    Article  Google Scholar 

  37. Tuff, J., Wade, J. & Wood, B. J. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342–345 (2013).

    Article  Google Scholar 

  38. Walker, J. C. G. Evolution of the Atmosphere (Macmillan, 1977).

    Google Scholar 

  39. Tian, F., Kasting, J. F., Liu, H. L. & Roble, R. G. Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113, E05008 (2008).

    Google Scholar 

  40. Stone, J. M. & Proga, D. Anisotropic winds from close-in extrasolar planets. Astrophys. J. 694, 205–213 (2009).

    Article  Google Scholar 

  41. Werner, S. C. The early martian evolution—Constraints from basin formation ages. Icarus 195, 45–60 (2008).

    Article  Google Scholar 

  42. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  43. Bandfield, J. L., Glotch, T. D. & Christensen, P. R. Spectroscopic identification of carbonate minerals in the martian dust. Science 301, 1084–1087 (2003).

    Article  Google Scholar 

  44. Lammer, H. et al. Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

    Article  Google Scholar 

  45. Tian, F., Kasting, J. F. & Solomon, S. C. Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, L02205 (2009).

    Article  Google Scholar 

  46. Terada, N. et al. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9, 55–70 (2009).

    Article  Google Scholar 

  47. Ribas, I., Guinan, E. F., Gudel, M. & Audard, M. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 angstrom). Astrophys. J. 622, 680–694 (2005).

    Article  Google Scholar 

  48. Phillips, R. J. et al. Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001).

    Article  Google Scholar 

  49. Wetzel, D. T., Rutherford, M. J., Jacobsen, S. D., Hauri, E. H. & Saal, A. E. Degassing of reduced carbon from planetary basalts. Proc. Natl Acad. Sci. USA 110, 8010–8013 (2013).

    Article  Google Scholar 

  50. Zahnle, K., Haberle, R. M., Catling, D. C. & Kasting, J. F.. Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res. 113, E11004 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This paper benefited from reviews by B. Toon and R. Wordsworth. Support for this work came from the NASA Exobiology Program and the NASA Astrobiology Institute.

Author information

Authors and Affiliations

Authors

Contributions

R.M.R. and R.K. generated H2O and CO2 line-by-line cross-sections. R.M.R. generated CH4 line-by-line cross-sections with guidance from R.F. R.M.R. carried out most of the background research and climate model updates. R.M.R. and R.K. debugged the climate model. R.M.R. carried out the computations and wrote most of the Supplementary Information. T.D.R. worked with R.M.R. in providing flux comparisons with SMART; M.E.Z. carried out numerical calculations of hydrodynamic escape rates. J.F.K. provided overall guidance and wrote much of the main text. All authors contributed to proofreading and making comments on the paper.

Corresponding author

Correspondence to Ramses M. Ramirez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 616 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramirez, R., Kopparapu, R., Zugger, M. et al. Warming early Mars with CO2 and H2. Nature Geosci 7, 59–63 (2014). https://doi.org/10.1038/ngeo2000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2000

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing