Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Statistically derived contributions of diverse human influences to twentieth-century temperature changes

Abstract

The warming of the climate system is unequivocal as evidenced by an increase in global temperatures by 0.8 °C over the past century. However, the attribution of the observed warming to human activities remains less clear, particularly because of the apparent slow-down in warming since the late 1990s. Here we analyse radiative forcing and temperature time series with state-of-the-art statistical methods to address this question without climate model simulations. We show that long-term trends in total radiative forcing and temperatures have largely been determined by atmospheric greenhouse gas concentrations, and modulated by other radiative factors. We identify a pronounced increase in the growth rates of both temperatures and radiative forcing around 1960, which marks the onset of sustained global warming. Our analyses also reveal a contribution of human interventions to two periods when global warming slowed down. Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s. Furthermore, we identify a contribution from the two world wars and the Great Depression to the documented cooling in the mid-twentieth century, through lower carbon dioxide emissions. We conclude that reductions in greenhouse gas emissions are effective in slowing the rate of warming in the short term.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Filtered and unfiltered temperature series.
Figure 2: Aggregated radiative forcing series.
Figure 3: GDP and CO2 emissions yearly changes.
Figure 4: Trends of CFC11, CFC12, CH4, CO2 and AIE.
Figure 5: The effects of the slow-down in RFGHG and the increase in AIE over TRF.

References

  1. Hasselmann, K. Multi-pattern fingerprint method for detection and attribution of climate change. Clim. Dyn. 13, 601–611 (1997).

    Article  Google Scholar 

  2. Kaufmann, R. K. & Stern, D. I. Evidence for human influence on climate from hemispheric temperature relations. Nature 388, 39–44 (1997).

    Article  Google Scholar 

  3. Gay, C., Estrada, F. & Sánchez, A. Global and hemispheric temperature revisited. Clim. Change 94, 333–349 (2009).

    Article  Google Scholar 

  4. Estrada, F., Gay, C. & Sánchez, A. A reply to ‘Does temperature contain a stochastic trend? Evaluating conflicting statistical results’. Clim. Change 101, 407–414 (2010).

    Article  Google Scholar 

  5. Perron, P. The great crash, the oil price shock, and the unit root hypothesis. Econometrica 57, 1361–1401 (1989).

    Article  Google Scholar 

  6. Kim, D. & Perron, P. Unit root tests allowing for a break in the trend function under both the null and the alternative hypotheses. J. Econom. 148, 1–13 (2009).

    Article  Google Scholar 

  7. Perron, P. & Yabu, T. Testing for shifts in trend with an integrated or stationary noise component. JBES 27, 369–396 (2009).

    Google Scholar 

  8. Kejriwal, M. & Perron, P. A sequential procedure to determine the number of breaks in trend with an integrated or stationary noise component. J. Time Ser. Anal. 31, 305–328 (2010).

    Article  Google Scholar 

  9. Bierens, H. J. Nonparametric nonlinear cotrending analysis, with an application to interest and inflation in the United States. JBES 18, 323–337 (2000).

    Google Scholar 

  10. Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V. & Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dyn. 37, 759–773 (2011).

    Article  Google Scholar 

  11. Swanson, K. L., Sugihara, G. & Tsonis, A. A. Long-term natural variability and the twentieth century climate change. Proc. Natl Acad. Sci. USA 106, 16120–16123 (2009).

    Article  Google Scholar 

  12. Knudsen, M. F., Seidenkrantz, M. S., Jacobsen, B. H. & Kuijpers, A. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Comm. 2, 178 (2011).

    Article  Google Scholar 

  13. IPCC Climate Change 2007: The Physical Science Basis. Solomon, S. et al. (eds), 996 (Cambridge Univ. Press, 2007).

  14. Estrada, F., Perron, P., Gay, C. & Martı´nez, B. A time series analysis of the twentieth century climate simulations produced for the IPCC’s AR4. PLoS ONE 8, e60017 (2013).

    Article  Google Scholar 

  15. Perron, P. & Zhu, X. Structural breaks with deterministic and stochastic trends. J. Econom. 129, 65–119 (2005).

    Article  Google Scholar 

  16. Meehl, G. A., Washington, W. M., Wigley, T. M. L., Arblaster, J. M. & Dai, A. Solar and greenhouse gas forcing and climate response in the twentieth century. J. Clim. 16, 426–444 (2003).

    Article  Google Scholar 

  17. Hansen, J. & Sato, M. Greenhouse gas growth rates. Proc. Natl Acad. Sci. USA 101, 16109–16114 (2004).

    Article  Google Scholar 

  18. Schwartz, S. E. Determination of Earth’s transient and equilibrium climate sensitivities from observations over the twentieth century: strong dependence on assumed forcing. Surv. Geophys. 33, 745–777 (2012).

    Article  Google Scholar 

  19. Gregory, J. M. & Forster, P. M. Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. 113, D23105 (2008).

    Article  Google Scholar 

  20. Beenstock, M., Reingewertz, Y. & Paldor, N.. Polynomial cointegration tests of anthropogenic impact on global warming. ESD 3, 173–188 (2012).

    Google Scholar 

  21. Kaufmann, R.K., Kauppi, H. & Stock, J. H. Emissions, concentrations, & temperature: a time series analysis. Clim. Change 77, 249–278 (2009).

    Article  Google Scholar 

  22. Kaufmann, R. K., Kauppi, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl Acad. Sci. USA 108, 11790–11793 (2011).

    Article  Google Scholar 

  23. Perron, P. Testing for a unit root in a time series with a changing mean. JBES 8, 153–162 (1990).

    Google Scholar 

  24. Hansen, J. & Lebedeff, S. Global trends of measured surface air temperature. J. Geophys. Res. 92, 13345–13372 (1987).

    Article  Google Scholar 

  25. Jones, P. D., Raper, S. C. B., Bradley, R. S., Diaz, H. F., Kelly, P. M. & Wigley, T. M. L. Northern Hemisphere surface air temperature variations: 1851–1984. J. Clim. App. Meteorol. 25, 161–179 (1986).

    Article  Google Scholar 

  26. Jones, P. D., Raper, S. C. B. & Wigley, T. M. L. Southern Hemisphere surface air temperature variations: 1851–1984. J. Clim. App. Meteorol. 25, 1213–1230 (1986).

    Article  Google Scholar 

  27. Jones, P. D., Wigley, T. M. L. & Wright, P. B. Global temperature variations between 1861 and 1984. Nature 322, 430–434 (1986).

    Article  Google Scholar 

  28. Thompson, D. W. J., Kennedy, J. J., Wallace, J. M. & Jones, P. D. A large discontinuity in the mid-twentieth century in observed global mean surface temperature. Nature 453, 646–649 (2008).

    Article  Google Scholar 

  29. Andres, R. J., Fielding, D. J., Marland, G., Boden, T. A. & Kumar, N. Carbon dioxide emissions from fossil-fuel use, 1751–1950. Tellus 51B, 759–765 (1999).

    Article  Google Scholar 

  30. Hansen, J.E. & Sato, M. Trends of measured climate forcing agents. Proc. Natl Acad. Sci. USA 98, 14778–14783 (2001).

    Article  Google Scholar 

  31. Velders, G. J. M. et al. The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad. Sci. USA 104, 4814–19 (2007).

    Article  Google Scholar 

  32. Kai, F. U., Tyler, S. C., Randerson, J. T. & Blake, D. R. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476, 194–197 (2011).

    Article  Google Scholar 

  33. Hansen, J., Sato, M., Kharecha, P. & von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 27031–27105 (2011).

    Article  Google Scholar 

  34. Hansen, J., Sato, M., Lacis, A., Ruedy, R., Tegen, I. & Matthews, E. Perspective: Climate forcings in the industrial era. Proc. Natl Acad. Sci. USA 95, 12753–12758 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

F.E. acknowledges financial support from the Consejo Nacional de Ciencia y Tecnologı´a (http://www.conacyt.gob.mx) under grant CONACYT-310026, as well as from PASPA DGAPA of the Universidad Nacional Autónoma de México.

Author information

Authors and Affiliations

Authors

Contributions

F.E. and P.P. contributed equally to the conceptual design, the data analysis and the writing of this manuscript. B.M.L. contributed to the conceptual design and data analysis.

Corresponding author

Correspondence to Francisco Estrada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1257 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Estrada, F., Perron, P. & Martínez-López, B. Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nature Geosci 6, 1050–1055 (2013). https://doi.org/10.1038/ngeo1999

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1999

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing