Renewable energy requires infrastructures built with metals whose extraction requires more and more energy. More mining is unavoidable, but increased recycling, substitution and careful design of new high-tech devices will help meet the growing demand.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Life-cycle impact assessment methods for physical energy scarcity: considerations and suggestions
The International Journal of Life Cycle Assessment Open Access 22 November 2021
-
Kreislaufführung von Werkstoffen, Komponenten und Produkten: eine ökonomische Herausforderung
Wirtschaftsdienst Open Access 01 March 2021
-
Mapping anthropogenic mineral generation in China and its implications for a circular economy
Nature Communications Open Access 25 March 2020
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.

© B CHRISTOPHER/ALAMY

References
Masson-Delmotte, V., Le Treut, H. & Paillard, D. in L'énergie à découvert (eds Mosseri, R. & Jeandel, C.) 22–25 (CNRS Editions, 2013).
World energy outlook 2012: Renewable energy outlook (International Energy Agency 2012); http://www.worldenergyoutlook.org/publications/weo-2012
Deciding the Future: Energy Policy Scenarios to 2050 (World Energy Council 2007); http://go.nature.com/vYzp4M
Öhrlund, I. Science and Technology Options Assessment: Future Metal Demand from Photovoltaic Cells and Wind Turbines (European Parliament, 2011); http://go.nature.com/VUOs7V
Mineral commodity summaries 2011 (US Geological Survey, 2011); http://go.nature.com/qH7nLj
Mineral commodity statistics (US Geological Survey Data Series 140, 2005); http://pubs.usgs.gov/ds/2005/140/
Deng, Y., Cornelissen, S. & Klaus, S. The Energy Report: 100% Renewable Energy by 2050 (WWF with ECOFYS and OMA, 2011).
International Energy Outlook 2013 (US Energy Information Administration, 2013); http://go.nature.com/Vv1J4x
Report of the Ad-hoc Working Group on defining critical raw materials (European Commission, Enterprise and Industry, 2010); http://go.nature.com/yto76i
Brown, T. J. et al. European mineral statistics 2007–11 (British Geological Survey, 2013).
Commodity Profile – Copper (British Geological Survey 2007); http://www.bgs.ac.uk/mineralsuk/statistics/mineralProfiles.html
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 383 kb)
Rights and permissions
About this article
Cite this article
Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nature Geosci 6, 894–896 (2013). https://doi.org/10.1038/ngeo1993
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo1993
This article is cited by
-
What we have learned from the past and how we should look forward
Mineral Economics (2022)
-
Save the giants: demand beyond production capacity of tantalum raw materials
Mineral Economics (2022)
-
Principles, drivers and opportunities of a circular bioeconomy
Nature Food (2021)
-
Mining our green future
Nature Reviews Materials (2021)
-
Kreislaufführung von Werkstoffen, Komponenten und Produkten: eine ökonomische Herausforderung
Wirtschaftsdienst (2021)