Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Where the genes flow

Particles of organic matter in the ocean host diverse communities of microorganisms. These particles may serve as hotspots of bacterial gene exchange, creating opportunities for microbial evolution.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Routes of horizontal gene transfer in bacteria and archaea.
Figure 2: Genes encoding enzymes involved in DNA transfer in marine microbes.


  1. 1

    Falkowski, P. G., Barber, R. T. & Smetacek, V. V. Science 281, 200–207 (1998).

    Article  Google Scholar 

  2. 2

    Blackburn, N., Fenchel, T. & Mitchell, J. Science 282, 2254–2256 (1998).

    Article  Google Scholar 

  3. 3

    Simon, M., Grossart, H. P., Schweitzer, B. & Ploug, H. Aquat. Microb. Ecol. 28, 175–211 (2002).

    Article  Google Scholar 

  4. 4

    Boucher, Y. et al. Annu. Rev. Genet. 37, 283–328 (2003).

    Article  Google Scholar 

  5. 5

    Raymond, J., Siefert, J. L., Staples, C. R. & Blankenship, R. E. Mol. Biol. Evol. 21, 541–554 (2004).

    Article  Google Scholar 

  6. 6

    Yooseph. et al. Nature 468, 60–66 (2010).)

    Article  Google Scholar 

  7. 7

    Stocker R. Science 338, 628–633 (2012).

    Article  Google Scholar 

  8. 8

    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Proc. Natl. Acad. Sci. USA 105, 4209–4214 (2008).

    Article  Google Scholar 

  9. 9

    Madsen, J. S., Burmølle, M., Hansen, L. H. & Sørensen, S. J. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012).

    Article  Google Scholar 

  10. 10

    Meibom, K. L., Blokesch, M., Dolganov, N. A. & Wu, C. Y. Science 310, 1824–1827 (2005).

    Article  Google Scholar 

  11. 11

    Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Proc. Natl. Acad. Sci. USA 108, 14288–14293 (2011).

    Article  Google Scholar 

  12. 12

    Ganesh, S., Parris, D. J., DeLong, E. F. & Stewart, F. J. ISME J. (in the press).

  13. 13

    Grossart, H. P. & Ploug, H. Limnol. Oceanogr. 46, 267–277 (2001).

    Article  Google Scholar 

  14. 14

    Hunt, D. E. et al. Science 320, 1081–1085 (2008).

    Article  Google Scholar 

  15. 15

    Polz, M. F., Alm E. J. & Hanage, W. P. Trends Genet. 29, 170–175 (2013).

    Article  Google Scholar 

  16. 16

    Caro-Quintero, A., Ritalahti, K. M., Cusick, K. D., Löffler, F. E. & Konstantinidis, K. T. mBio 3, e00025-12 (2012).

    Article  Google Scholar 

  17. 17

    Cordero, O. X. & Hogeweg, P. Proc. Natl. Acad. Sci. USA 106, 21748–53 (2009).

    Article  Google Scholar 

  18. 18

    DeLong, E. F. et al. Science 311, 496–503 (2006).

    Article  Google Scholar 

  19. 19

    Stewart, F. J., Ulloa, O. & DeLong, E. F. Environ. Microbiol. 14, 23–40 (2012).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Frank J. Stewart.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stewart, F. Where the genes flow. Nature Geosci 6, 688–690 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing