An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean

This article has been updated


Most oceanic plateaux are massive basaltic volcanoes. However, the structure of these volcanoes, and how they erupt and evolve, is unclear, because they are remote and submerged beneath the oceans. Here we use multichannel seismic profiles and rock samples taken from Integrated Ocean Drilling Program core sites to analyse the structure of the Tamu Massif, the oldest and largest edifice of the Shatsky Rise oceanic plateau in the north-western Pacific Ocean. We show that the Tamu Massif is a single, immense volcano, constructed from massive lava flows that emanated from the volcano centre to form a broad, shield-like shape. The volcano has anomalously low slopes, probably due to the high effusion rates of the erupting lavas. We suggest that the Tamu Massif could be the largest single volcano on Earth and that it is comparable in size to the largest volcano in the Solar System, Olympus Mons on Mars. Our data document a class of oceanic volcanoes that is distinguished by its size and morphology from the thousands of seamounts found throughout the oceans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Shatsky Rise bathymetry45 and tectonic map.
Figure 2: Lithology of Tamu Massif igneous sections and comparison with ODP Site 1185 on Ontong Java Plateau.
Figure 3: MCS reflection Line A–B, across the axis of Tamu Massif.
Figure 4: MCS reflection Line C–D, along the axis of Tamu Massif.
Figure 5: Enlargement of a portion of the MCS reflection Line A–B to show intra-basement reflector detail.

Change history

  • 06 September 2013

    In the version of this Article originally published online, the published online date should have read '5 September 2013'. This has been corrected in the PDF and HTML versions of the Article.


  1. 1

    Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: Plume heads and tails. Science 246, 103–107 (1989).

    Article  Google Scholar 

  2. 2

    Coffin, M. F. & Eldholm, O. Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Article  Google Scholar 

  3. 3

    Campbell, I. H. Large igneous provinces and the mantle plume hypothesis. Elements 1, 265–269 (2005).

    Article  Google Scholar 

  4. 4

    Saunders, A. D. et al. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chem. Geol. 241, 282–318 (2007).

    Article  Google Scholar 

  5. 5

    Korenaga, J. Why did not the Ontong Java Plateau form subaerially? Earth Planet. Sci. Lett. 234, 385–399 (2005).

    Article  Google Scholar 

  6. 6

    Foulger, G. R. in Plates, Plumes, and Planetary Processes Vol. 430 (eds Foulger, G. R. & Jurdy, D. M.) 1–28 (Special Paper, GSA, 2007).

    Google Scholar 

  7. 7

    Rogers, G. C. Oceanic plateaus as meteorite impact structures. Nature 299, 341–342 (1982).

    Article  Google Scholar 

  8. 8

    Sager, W. W., Kim, J., Klaus, A., Nakanishi, M. & Khankishieva, L. M. Bathymetry of Shatsky Rise, northwest Pacific Ocean: Implications for ocean plateau development at a triple junction. J. Geophys. Res. 104, 7557–7576 (1999).

    Article  Google Scholar 

  9. 9

    Nakanishi, M., Sager, W. W. & Klaus, A. Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: Implications for hot spot-triple junction interaction and oceanic plateau formation. J. Geophys. Res. 104, 7539–7556 (1999).

    Article  Google Scholar 

  10. 10

    Mahoney, J. J., Duncan, R. A., Tejada, M. L. G., Sager, W. W. & Bralower, T. J. Jurassic–Cretaceous boundary age and mid-ocean ridge type mantle source for Shatsky Rise. Geology 33, 185–188 (2005).

    Article  Google Scholar 

  11. 11

    Sager, W. W., Sano, T. & Geldmacher, J. Expedition 324 Scientists. Proc. IODP 324 (2010).

  12. 12

    Sager, W. W., Sano, T. & Geldmacher, J. How do oceanic plateaus form? Clues from drilling at Shatsky Rise. EOS, Trans. AGU 92, 37–44 (2011).

    Article  Google Scholar 

  13. 13

    Ballard, R. D., Holcomb, R. T. & Van Andel, Tj. H. The Galapagos Rift at 86° W: 3. Sheet flows, collapse pits, and lava lakes of the rift valley. J. Geophys. Res. 84, 5407–5422 (1979).

    Article  Google Scholar 

  14. 14

    McClinton, T., White, S. M., Colman, A. & Sinton, J. M. Reconstructing lava flow emplacement processes at the hotspot-affected Galapagos spreading center, 95° W and 92° W. Geochem. Geophys. Geosys. (in the press 2013).

  15. 15

    Self, S., Thordarson, T. & Keszthelyi, L. in Large Igneous Provinces, Continental, Oceanic, and Planetary Flood Volcanism Vol. 100 (eds Mahoney, J. J. & Coffin, M. F.) 381–410 (Geophysical Monograph Series, AGU, 1997).

    Google Scholar 

  16. 16

    Jerram, D.W. & Widdowson, M. The anatomy of continental flood basalt provinces: Geological constraints on the processes and products of flood volcanism. Lithos 79, 385–405 (2005).

    Article  Google Scholar 

  17. 17

    Bryan, S. E. et al. The largest volcanic eruptions on Earth. Earth-Sci. Rev. 102, 207–229 (2010).

    Article  Google Scholar 

  18. 18

    Bryan, S. E. & Ferrari, L. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Geol. Soc. Am. Bull. 125, 1053–1078 (2013).

    Article  Google Scholar 

  19. 19

    Keszthelyi, L. & Self, S. Some physical requirements for the emplacement of long basaltic lava flows. J. Geophys. Res. 103, 27447–24464 (1998).

    Article  Google Scholar 

  20. 20

    Gregg, T. K. P. & Fornari, D. J. Long submarine lava flows: Observations and results from numerical modeling. J. Geophys. Res. 103, 27517–27531 (1998).

    Article  Google Scholar 

  21. 21

    Shipboard Scientific Party Leg 192 Summary. Proc. ODP, Init. Repts. 192, 1–72 (2001).

  22. 22

    Korenaga, J. & Sager, W. W. Seismic tomography of Shatsky Rise by adaptive importance sampling. J. Geophys. Res. 117, B08102 (2012).

    Article  Google Scholar 

  23. 23

    Smith, D. K. Shape analysis of Pacific seamounts. Earth Planet. Sci. Lett. 90, 457–466 (1988).

    Article  Google Scholar 

  24. 24

    Planke, S. & Eldholm, O. Seismic response and construction of seaward dipping wedges of flood basalts: Vøring volcanic margin. J. Geophys. Res. 99, 9263–9278 (1994).

    Article  Google Scholar 

  25. 25

    Planke, S., Symonds, P. A., Alvestad, E. & Skogseid, J. Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins. J. Geophys. Res. 105, 19335–19351 (2000).

    Article  Google Scholar 

  26. 26

    Rotstein, Y., Schlich, R. & Munschy, M. Structure and tectonic history of the southern Kerguelen Plateau (Indian Ocean) deduced from seismic reflection data. Tectonics 11, 1332–1247 (1992).

    Article  Google Scholar 

  27. 27

    Uenzelmann-Neben, G., Gohl, K., Ehrhart, A. & Seargent, M. Agulhas Plateau, SW Indian Ocean: New Evidence for excessive volcanism. Geophys. Res. Lett. 26, 1941–1944 (1999).

    Article  Google Scholar 

  28. 28

    Inoue, H., Coffin, M. F., Nakamura, Y., Mochizuki, K. & Kroenke, L. W. Intrabasement reflections of the Ontong Java Plateau: Implications for plateau construction. Geochem. Geophys. Geosys. 9, Q04014 (2008).

    Article  Google Scholar 

  29. 29

    Klaus, A. & Sager, W. W. Data report: High-resolution site survey seismic reflection data for ODP Leg 198 drilling on Shatsky Rise, northwest Pacific. Proc. ODP, Init. Repts. 198, 1–21 (2002).

    Google Scholar 

  30. 30

    MacDonald, G. A. Volcanoes (Prentice Hall, 1972).

    Google Scholar 

  31. 31

    Stearns, H. T. Geology of the State of Hawaii 2nd edn (Pacific Books, 1985).

    Google Scholar 

  32. 32

    Walker, G. P. L. in Encyclopedia of Volcanoes (eds Sigurdsson, H., Houghton, B., Rymer, H., Stix, J. & McNutt, S.) 283–289 (Academic, 2000).

    Google Scholar 

  33. 33

    Cashman, K. V. & Sparks, R. S. J. How volcanoes work: A 25 year perspective. Geol. Soc. Am. Bull. 125, 664–690 (2013).

    Article  Google Scholar 

  34. 34

    Sigmundsson, F. Iceland Geodynamics: Crustal Deformation and Divergent Plate Tectonics (Springer, 2005).

    Google Scholar 

  35. 35

    Wu, S. S. C., Garcia, P. A., Jordan, R., Schafer, F. J. & Skiff, B. A. Topography of the shield volcano, Olympus Mons on Mars. Nature 309, 432–435 (1984).

    Article  Google Scholar 

  36. 36

    Comer, R. P., Solomon, S. C. & Head, J. W. Mars: Thickness of the lithosphere from the tectonic response of volcanic loads. Rev. Geophys. 23, 61–92 (1985).

    Article  Google Scholar 

  37. 37

    Wesssel, P. Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry. J. Geophys. Res. 106, 19431–19441 (2001).

    Article  Google Scholar 

  38. 38

    Watts, A. B., Sandwell, D. T., Smith, W. H. F. & Wessel, P. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. J. Geophys. Res. 111, B08408 (2006).

    Article  Google Scholar 

  39. 39

    Self, S., Jay, A. E., Widdowson, M. & Keszthelyi, L. P. Correlation of the Deccan and Rajamundry trap lavas: Are these the longest and largest flows on Earth? J. Volc. Geotherm. Res. 172, 3–19 (2008).

    Article  Google Scholar 

  40. 40

    Sano, T. et al. Variety and origin of magmas on Shatsky Rise, northwest Pacific Ocean. Geochem. Geophys. Geosys. 13, Q08010 (2012).

    Article  Google Scholar 

  41. 41

    Sinton, J. M. & Detrick, R. S. Mid-ocean ridge magma chambers. J. Geophys. Res. 97, 197–216 (1992).

    Article  Google Scholar 

  42. 42

    Mutter, J. C. Seaward dipping reflectors and the continent-ocean boundary at passive continental margins. Tectonophysics 114, 117–131 (1985).

    Article  Google Scholar 

  43. 43

    Menzies, M. A., Klemperer, S. L., Ebinger, C. J. & Baker, J. in Volcanic Rifted Margins Vol. 632 (eds Menzies, M. A., Klemperer, S. L., Ebinger, C. J. & Baker, J.) 1–14 (Special Paper, GSA, 2002).

    Google Scholar 

  44. 44

    Eldholm, O., Thiede, J. & Taylor, E. Evolution of the Vøring continental margin. Proc. ODP, Sci. Res. 104, 1033–1065 (1989).

    Google Scholar 

  45. 45

    Smith, W. H. F. & Sandwell, D. T. Global seafloor topography from satellite altimetry and ship depth soundings: Evidence for stochastic reheating of the oceanic lithosphere. Science 277, 1566–1962 (1997).

    Google Scholar 

  46. 46

    Koppers, A. A. P. et al. Massive basalt flows on the southern flank of Tamu Massif, Shatsky Rise: A reappraisal of ODP Site 1213 basement units. Proc. IODP 324 (2010).

Download references


This research used data provided by the Integrated Ocean Drilling Program. IODP is sponsored by the US National Science Foundation (NSF) and participating countries under management by Consortium for Ocean Leadership. We thank the captain and crew onboard the R/V Marcus G. Langseth for assistance in collecting seismic data. We gratefully acknowledge the invaluable assistance of Robert Steinhaus and his team for seismic data acquisition. This research was supported by NSF grants OCE-0926611 and OCE-0926945.

Author information




Seismic data were collected by W.W.S., J.Z. and J.K., with processing by J.Z. Authors W.W.S., A.A.P.K., J.J.M., T.S. and M.W. collaborated on IODP Expedition 324 and assimilated those findings into this study. The manuscript was written by W.W.S. with extensive input from all authors.

Corresponding author

Correspondence to William W. Sager.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 17475 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sager, W., Zhang, J., Korenaga, J. et al. An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nature Geosci 6, 976–981 (2013).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing