Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seafloor oxygen consumption fuelled by methane from cold seeps

Abstract

The leakage of cold, methane-rich fluids from subsurface reservoirs to the sea floor at specific sites on continental slopes, termed cold seeps, sustains some of the richest ecosystems on the sea bed. These seep-fuelled communities utilize around two orders of magnitude more oxygen per unit area than non-seep seafloor communities. Much of the oxygen is consumed by microbes and animal–microbe symbioses that use methane as an energy source. The proportion of methane consumed varies with fluid flow rate, ranging from 80% in seeps with slow fluid flow to less than 20% in seeps where fluid flow is high. Assuming the presence of a few tens of thousands of active cold seep systems on continental slopes worldwide, we estimate that the total efflux of methane to the overlying ocean could reach 0.02 Gt of carbon annually. As much more methane is lost from continental slopes, be it through emission to the hydrosphere or consumption by microbes, than can be produced, we suggest that a substantial fraction of the methane that fuels seep ecosystems is sourced from deep carbon buried kilometres under the sea floor.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Oxygen uptake at seep and non-seep sites.
Figure 2: Cold seep habitats with typical communities of bacterial mats.
Figure 3: Cold-seep methane and carbon fluxes at continental slopes.

References

  1. Ryan, P. R. (ed.) Deep-sea hot springs and cold seeps. Oceanus 27, 32–33 (1984).

    Google Scholar 

  2. Levin, L. A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr. Mar. Biol. 43, 1–46 (2005).

    Google Scholar 

  3. Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Rev. Microbiol. 6, 725–740 (2008).

    Article  Google Scholar 

  4. Paull, C. K. et al. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226, 965–967 (1984).

    Article  Google Scholar 

  5. Suess, E. et al. Biological communities at vent sites along the subduction zone off Oregon. Biol. Soc. Wash. Bull. 6, 475–484 (1985).

    Google Scholar 

  6. Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Annu. Rev. Mar. Sci. 4, 79–112 (2012).

    Article  Google Scholar 

  7. Kvenvolden K. & Rogers B. Gaia's breath: global methane exhalations. Mar. Petrol. Geol. 22, 579–590 (2005).

    Article  Google Scholar 

  8. Judd, A. G., Hovland, M., Dimitrov, L. I., Garcia-Gil, S. & Jukes, V. The geological methane budget at continental margins and its influence on climate change. Geofluids 2, 109–126 (2002).

    Article  Google Scholar 

  9. Suess, E. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.) 188–203 (Springer-Verlag, 2010).

    Google Scholar 

  10. Wallmann, K. et al. The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5, 2449–2498 (2012).

    Article  Google Scholar 

  11. Buffett, B. & Archer, D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet. Sci. Lett. 227, 185–199 (2004).

    Article  Google Scholar 

  12. Judd, A. G. & Hovland, M. Seabed fluid flow: the impact of geology, biology and the marine environment (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  13. Foucher, J. P. et al. Structure and drivers of cold seep ecosystems. Oceanography 22, 92–109 (2009).

    Article  Google Scholar 

  14. Milkov, A. V., Sassen, R., Apanasovich, T. V. & Dadashev F. G. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys. Res. Lett. 30, 1037 (2003).

    Article  Google Scholar 

  15. Jenkins R. G. in Encyclopedia of Geobiology (eds Thiel, V. & Reitner, J.) 278–288 (Springer, 2011).

    Book  Google Scholar 

  16. Mascle J. et al. Morphostructure of the Egyptian continental margin: insights from swath bathymetry surveys. Mar. Geophys. Res. 27, 49–59 (2006).

    Article  Google Scholar 

  17. Bohrmann, G. et al. Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechnskii and Odessa mud volcanoes. Geo-Mar. Lett. 23, 239–49 (2003).

    Article  Google Scholar 

  18. Fisher, C., Roberts, H., Cordes, E. & Bernard, B. Cold seeps and associated communities of the Gulf of Mexico. Oceanography 20, 119–129 (2007).

    Google Scholar 

  19. Brothers, L. L. et al. Evidence for extensive methane venting on the southeastern US Atlantic margin. Geology 41, 807–810 (2013).

    Article  Google Scholar 

  20. Archer, D. E. & Buffett, B. A. A two-dimensional model of the methane cycle in a sedimentary accretionary wedge. Biogeosciences 9, 3323–3336 (2012).

    Article  Google Scholar 

  21. Archer, D. E., Buffett, B. A. & McGuire, P. C. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles. Biogeosciences 9, 2859–2878 (2012).

    Article  Google Scholar 

  22. Cicerone, R. J. & Oremland R. S. Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycles 2, 299–327 (1988).

    Article  Google Scholar 

  23. Dickens, G. R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213, 169–183 (2003).

    Article  Google Scholar 

  24. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article  Google Scholar 

  25. Camilli, R. et al. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330, 201–204 (2010).

    Article  Google Scholar 

  26. Joye, S. B., MacDonald, I. R., Leifer, I. & Asper, V. Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nature Geosci. 4, 160–164 (2011).

    Article  Google Scholar 

  27. Tryon, M. D. & Brown, K. M. Complex flow patterns through Hydrate Ridge and their impact on seep biota. Geophys. Res. Lett. 28, 2863–2866 (2001).

    Article  Google Scholar 

  28. Leifer, I. & Patro, R. K. The bubble mechanism for methane transport from the shallow sea bed to the surface: a review and sensitivity study. Cont. Shelf Res. 22, 2409–2428 (2002).

    Article  Google Scholar 

  29. Leifer, I., Luyendyk, B. P., Boles, J. & Clark, J. F. Natural marine seepage blowout: contribution to atmospheric methane. Glob. Biogeochem. Cycles 20, GB3008 (2006).

    Article  Google Scholar 

  30. Nikolovska, A., Sahling, H. & Bohrmann, G. Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochem. Geophys. Geosyst. 9, Q10010 (2008).

    Article  Google Scholar 

  31. Römer, M., Sahling, H., Pape, T., Bohrmann, G. & Spieβ, V. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J. Geophys. Res. 117, C10015 (2012).

    Article  Google Scholar 

  32. Linke, P. et al. In situ measurement of fluid flow from cold seeps at active continental margins. Deep-Sea Res. I, 41, 721–739 (1994).

    Article  Google Scholar 

  33. Linke, P., Wallmann, K., Suess, E., Hensen, C. & Rehder, G. In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin. Earth Planet. Sci. Lett. 235, 79–95 (2005).

    Article  Google Scholar 

  34. Tryon, M., Brown, K., Dorman, L. R. & Sauter A. A new benthic aqueous flux meter for very low to moderate discharge rates. Deep-Sea Res. I 48, 2121–2146 (2001).

    Article  Google Scholar 

  35. Torres, M. E. et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR. I: Hydrological provinces. Earth Planet. Sci. Lett. 201, 525–540 (2002).

    Article  Google Scholar 

  36. Sommer, S., Tu¨rk, M., Kriwanek, S. & Pfannkuche, O. Gas exchange system for extended in situ benthic chamber flux measurements under controlled oxygen conditions: first application — sea bed methane emission measurements at Captain Arutyunov mud volcano. Limnol. Oceanogr.-Meth 6, 23–33 (2008).

    Article  Google Scholar 

  37. Wankel, S. D. et al. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry. Deep-Sea Res. II 57, 2022–2029 (2010).

    Article  Google Scholar 

  38. Valentine, D. Emerging topics in marine methane biogeochemistry. Annu. Rev. Mar. Sci. 3, 147–171 (2010).

    Article  Google Scholar 

  39. Hinrichs, K. U. & Boetius, A. in Ocean Margin Systems (eds Wefer, G. et al.) 457–477 (Springer Berlin, 2002).

    Book  Google Scholar 

  40. Niemann, H. et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443, 854–858 (2006).

    Article  Google Scholar 

  41. Sommer, S. et al. Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Glob. Biogeochem. Cycles 20, GB2019 (2006).

    Article  Google Scholar 

  42. Regnier, P. et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective. Earth Sci. Rev. 106, 105–130 (2011).

    Article  Google Scholar 

  43. de Beer, D. et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby mud volcano. Limnol. Oceanogr. 51, 1315–1331 (2006).

    Article  Google Scholar 

  44. Caprais, J-C. et al. A new CALMAR benthic chamber operating by submersible: first application in the cold-seep environment of Napoli mud volcano (Mediterranean Sea) Limnol. Oceanogr.-Meth. 8, 304–312 (2010).

    Article  Google Scholar 

  45. Jahnke, R. A. The global ocean flux of particulate organic carbon: areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 71–88 (1996).

    Article  Google Scholar 

  46. Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).

    Article  Google Scholar 

  47. Suess, E. et al. Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet. Sci. Lett. 170, 1–15 (1999).

    Article  Google Scholar 

  48. Sommer, S. et al. Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar. Ecol. Prog. Ser. 382, 69–86 (2009).

    Article  Google Scholar 

  49. Felden, J., Wenzhöfer, F., Feseker, T. & Boetius, A. Transport and consumption of oxygen and methane in different habitats of the Håkon Mosby mud volcano (HMMV). Limnol. Oceanogr. 55, 2366–2380 (2010).

    Article  Google Scholar 

  50. Decker, C., Caprais, J-C., Khripounoff, A. & Olu, K. First respiration estimates of cold-seep vesicomyid bivalves from in situ total oxygen uptake measurements. C. R. Biol. 335, 261–270 (2012).

    Article  Google Scholar 

  51. Hourdez, S. & Lallier, F. Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates. Rev. Environ. Sci. Biotechnol. 6, 143–159 (2007).

    Article  Google Scholar 

  52. Cordes, E. E., Arthur, M. A., Shea, K., Arvidson, R. S. & Fisher, C. R. Modeling the mutualistic interactions between tubeworms and microbial consortia. PLoS Biol. 3, e77 (2005).

    Article  Google Scholar 

  53. Sommer, S., Linke, P., Pfannkuche, O., Niemann, H. & Treude, T. Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand). Mar. Geol. 272, 223–232 (2010).

    Article  Google Scholar 

  54. Soetaert, K. et al. Modelling the impact of siboglinids on the biogeochemistry of the Captain Arutyunov mud volcano (Gulf of Cadiz). Biogeosciences 9, 5341–5352 (2012).

    Article  Google Scholar 

  55. Ruff, E. et al. Microbial communities of deep sea methane seeps at Hikurangi continental margin (New Zealand). Plos ONE http://dx.doi.org/10.1371/journal.pone.0072627 (in the press).

  56. Dale, A. et al. Pathways and regulation of carbon, sulfur and energy transfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand) Geochim. Cosmochim. Acta 74, 5763–5784 (2010).

    Article  Google Scholar 

  57. Barry, J. P., Kochevar, R. E. & Baxter, C. H. The influence of pore-water chemistry and physiology on the distribution of vesicomyid clams at cold seeps in Monterey Bay: implications for patterns of chemosynthetic community organization. Limnol. Oceanogr. 42, 318–328 (1997).

    Article  Google Scholar 

  58. Sibuet, M. & Olu, K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res. II 45, 517–567 (1998).

    Article  Google Scholar 

  59. Goffredi, S. K. & Barry, J. P. Species-specific variation in sulphide physiology between closely related vesicomyid clams. Mar. Ecol. Prog. Ser. 225, 227–238 (2002).

    Article  Google Scholar 

  60. Levin, L. A., Whitcraft, C. R., Mendoza, G. F., Gonzalez, J. P. & Cowie, G. Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700–1100 m). Deep-Sea Res. II 56, 449–71 (2009).

    Article  Google Scholar 

  61. Felden, J. et al. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep sea fan). Biogeosciences 10, 3269–3283 (2013).

    Article  Google Scholar 

  62. Grünke, S. et al. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile deep sea fan (eastern Mediterranean Sea). Geobiology 9, 330–348 (2011).

    Article  Google Scholar 

  63. Fischer, D. et al. Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling. Biogeosciences 9, 2013–2031 (2012).

    Article  Google Scholar 

  64. Tavormina, P. L., Ussler, W. & Orphan, V. J. Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl. Environ. Microbiol. 74, 3985–3995 (2008).

    Article  Google Scholar 

  65. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

    Article  Google Scholar 

  66. Haroon, M. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature http://dx.doi.org/10.1038/nature12375 (2013).

  67. Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

    Article  Google Scholar 

  68. Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).

    Article  Google Scholar 

  69. Pop Ristova, P. et al. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth). Biogeosciences 9, 5031–5048 (2012).

    Article  Google Scholar 

  70. Luff, R. & Wallmann, K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim. Cosmochim. Acta 67, 3403–3421 (2003).

    Article  Google Scholar 

  71. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    Article  Google Scholar 

  72. Orphan, V. J., House, C. H., Hinrichs, K-U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–87 (2001).

    Article  Google Scholar 

  73. Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).

    Article  Google Scholar 

  74. Reeburgh, W. S. Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett. 7, 269–298 (1980).

    Google Scholar 

  75. Jørgensen, B. B. & Kasten, S. in Marine Geochemistry (eds Zabel, M. & Schulz, H.) 271–309 (Springer, 2006).

    Book  Google Scholar 

  76. Meister, P., Liu, B., Ferdelman, T., Jørgensen, B. B. & Khalili, A. Control of sulphate and methane distributions in marine sediments by organic matter reactivity. Geochim. Cosmochim. Acta 104, 183–193 (2013).

    Article  Google Scholar 

  77. Borowski, W. S., Paull, C. K. & Ussler, W. III Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates. Mar. Geol. 159, 131–154 (1999).

    Article  Google Scholar 

  78. Seiter, K., Hensen, C., Schröter, J. & Zabel, M. Organic carbon content in surface sediments: defining regional provinces. Deep-Sea Res. I 51, 2001–2026 (2004).

    Article  Google Scholar 

  79. Treude, T., Boetius, A., Knittel, K., Wallmann, K. & Jørgensen, B. B. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar. Ecol. Prog. Ser. 264, 1–14 (2003).

    Article  Google Scholar 

  80. Boetius, A. & Suess, E. Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem. Geol. 205, 291–310 (2004).

    Article  Google Scholar 

  81. Pohlmann, J. W., Bauer, J. E., Waite, W. F., Osburn, C. L. & Chapman N. R. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. Nature Geosci. 4, 37–41 (2011).

    Article  Google Scholar 

  82. Lösekann, T. et al. Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby mud volcano, Barents Sea). Environ. Microbiol. 10, 3237–3254 (2008).

    Article  Google Scholar 

  83. Lichtschlag, A., Felden, J., Brüchert, V., Boetius, A. & deBeer, D. Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Håkon Mosby mud volcano (Barents Sea). Limnol. Oceanogr. 55, 931–949 (2010).

    Article  Google Scholar 

  84. Greinert, J., Artemov, Y., Egorov, V., DeBatist, M. & McGinnis, D. 1300-m high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Planet. Sci. Lett. 244, 1–15 (2006).

    Article  Google Scholar 

  85. Greinert, J. et al. Methane seepage along the Hikurangi Margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar. Geol. 272, 6–25 (2010).

    Article  Google Scholar 

  86. Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    Article  Google Scholar 

  87. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Article  Google Scholar 

  88. Jørgensen, B. B. & Boetius, A. Feast and famine: microbial life in the deep-sea bed. Nature Rev. Microbiol. 5, 770–781 (2007).

    Article  Google Scholar 

  89. Horsfield, B. et al. Living microbial ecosystems within the active zone of catagenesis: implications for feeding the deep biosphere. Earth Planet. Sci. Lett. 246, 55–69 (2006).

    Article  Google Scholar 

  90. Parkes, R. J. et al. Temperature activation of organic matter and minerals during burial has the potential to sustain the deep biosphere over geological timescales. Org. Geochem. 38, 845–852 (2007).

    Article  Google Scholar 

  91. Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

    Article  Google Scholar 

  92. Lipp, J. S., Morono, Y., Inagaki, F. & Hinrichs, K-U. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454, 991–994 (2008).

    Article  Google Scholar 

  93. Middelburg, J. J. A simple model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

    Article  Google Scholar 

  94. Joye, S. B. et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 205, 219–238 (2004).

    Article  Google Scholar 

  95. Suess, E. et al. Fluid venting in the eastern Aleutian subduction zone. J. Geophys. Res. 103, 2597–2614 (1998).

    Article  Google Scholar 

  96. Pop-Ristova, P. Biogeochemical Activity and Associated Biodiversity at Reduced Deep-Sea Hotspot Ecosystems PhD thesis, Univ. Bremen (2012).

    Google Scholar 

  97. Ritt, B. et al. Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile deep-sea fan. Mar. Biol. 158, 1187–1210 (2011).

    Article  Google Scholar 

  98. Loncke, L., Mascle, J. & Parties, F. S. Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (eastern Mediterranean): geophysical evidences. Mar. Petrol. Geol. 21, 669–689 (2004).

    Article  Google Scholar 

  99. Wenzhöfer, F. & Glud, R. N. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade. Deep-Sea Res. I 49, 1255–1279 (2002).

    Article  Google Scholar 

  100. Gru¨nke, S. et al. Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 9, 2947–2960 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank our colleagues J. Felden, J. Lipp, E. Ruff, K. Wallmann, G. Wegener and M. Zabel for joint discussions in the preparation of this manuscript. This is a contribution to MARUM research (www.marum.de/en) and to the Deep Carbon Observatory project (http://deepcarbon.net). A.B. received additional funds from the Leibniz project of the DFG (Deutsche Forschungsgemeinschaft) and the ERC project ABYSS (Assessment of Bacterial Life and Matter Cycling in Deep-Sea Surface Sediments, no. 294757).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Boetius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boetius, A., Wenzhöfer, F. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geosci 6, 725–734 (2013). https://doi.org/10.1038/ngeo1926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing