Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial biogeochemistry of coastal upwelling regimes in a changing ocean

Abstract

Coastal upwelling regimes associated with eastern boundary currents are the most biologically productive ecosystems in the ocean. As a result, they play a disproportionately important role in the microbially mediated cycling of marine nutrients. These systems are characterized by strong natural variations in carbon dioxide concentrations, pH, nutrient levels and sea surface temperatures on both seasonal and interannual timescales. Despite this natural variability, changes resulting from human activities are starting to emerge. Carbon dioxide derived from fossil fuel combustion is adding to the acidity of upwelled low-pH waters. Low-oxygen waters associated with coastal upwelling systems are growing in their extent and intensity as a result of a rise in upper ocean temperatures and productivity. And nutrient inputs to the coastal ocean continue to grow. Coastal upwelling systems may prove more resilient to changes resulting from human activities than other ocean ecosystems because of their ability to function under extremely variable conditions. Nevertheless, shifts in primary production, fish yields, nitrogen gain and loss, and the flux of climate-relevant gases could result from the perturbation of these highly productive and dynamic ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locations of the four main coastal upwelling systems associated with eastern boundary currents.
Figure 2: Trends in the biogeochemistry of coastal upwelling systems.

Similar content being viewed by others

References

  1. Chavez, F. P. & Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).

    Article  Google Scholar 

  2. Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–77 (1969).

    Article  Google Scholar 

  3. Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–258 (1995).

    Article  Google Scholar 

  4. Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Ñiquen, M. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).

    Article  Google Scholar 

  5. Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive 'acidified' water onto the continental shelf. Science 320, 1490 (2008).

    Article  Google Scholar 

  6. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  7. Loucaides, S. et al. Biological and physical forcing of carbonate chemistry in an upwelling filament off northwest Africa: results from a Lagrangian study. Glob. Biogeochem. Cycles 26, http://dx.doi.org/10.1029/2011GB004216 (2012).

  8. Lachkar, Z. & Gruber, N. Response of biological production and air–sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems. J. Mar. Syst. 109-110, 149–160 (2013).

    Article  Google Scholar 

  9. Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10, 193–216 (2013).

    Article  Google Scholar 

  10. Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part I: Oceanogr. Res. Pap. 51, 1159–1168 (2004).

    Article  Google Scholar 

  11. Kuypers, M. M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA 102, 6478–6483 (2005).

    Article  Google Scholar 

  12. Glessmer, M. S., Eden, C. & Oschlies, A. Contribution of oxygen minimum zone waters to the coastal upwelling off Mauritania. Prog. Oceanogr. 83, 143–150 (2009).

    Article  Google Scholar 

  13. Hamersley, M. R. et al. Anaerobic ammonium oxidation contributes significantly to nitrogen loss from the Peruvian oxygen minimum zone. Limnol. Oceanogr. 52, 923–933 (2007).

    Article  Google Scholar 

  14. Ward, B. B. et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461, 78–81 (2009).

    Article  Google Scholar 

  15. Capone, D. G. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (eds Rogers, J. E. & Whitman, W. B.) 255–275 (Am. Soc. Microbiol, 1991).

    Google Scholar 

  16. Bange, H. in Nitrogen in the Marine Environment 2nd edn (eds Capone, D. G., Bronk, D., Mulholland, M. & Carpenter, E. J.) 52–93 (Academic Press, 2008).

    Google Scholar 

  17. Bruland, K. W., Rue, E. L. & Smith, G. J. Iron and macronutrients in California coastal upwelling regimes: Implications for diatom blooms. Limnol. Oceanogr. 46, 1661–1674 (2001).

    Article  Google Scholar 

  18. Hutchins, D. A., DiTullio, G. R., Zhang, Y. & Bruland, K. W. An iron limitation mosaic in the California upwelling regime. Limnol. Oceanogr. 43, 1037–1054 (1998).

    Article  Google Scholar 

  19. Bruland, K. W., Rue, E. L., Smith, G. J. & DiTullio, G. R. Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Mar. Chem. 93, 81–103 (2005).

    Article  Google Scholar 

  20. Hutchins, D. A. et al. Phytoplankton iron limitation in the Humboldt current and Peru upwelling. Limnol. Oceanogr. 47, 997–1011 (2002).

    Article  Google Scholar 

  21. Hutchins, D. A. & Bruland, K. W. Iron-limited growth and Si:N uptake ratio in a coastal upwelling regime. Nature 393, 561–564 (1998).

    Article  Google Scholar 

  22. Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. & Dunne, J. P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 163–167, (2007).

    Article  Google Scholar 

  23. Bonnet, S. et al. Nutrient limitation of primary productivity in the southeast Pacific (BIOSOPE cruise). Biogeosciences 5, 215–225 (2008).

    Article  Google Scholar 

  24. Barber, R. T. & Chavez, F. P. Biological consequences of El Nino. Science 222, 1203–1210 (1983).

    Article  Google Scholar 

  25. Lavaniegos, B. E. & Ohman, M. D. Coherence of long-term variations of zooplankton in two sectors of the California current system. Prog. Oceanogr. 75, 42–69 (2007).

    Article  Google Scholar 

  26. McGowan, J. A., Cayan, D. R. & Dorman, L. R. M. Climate: Ocean variability and ecosystem response in the Northeast Pacific. Science 281, 210–217 (1998).

    Article  Google Scholar 

  27. Gruber, N. et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nature Geosci. 4, 787–792 (2011).

    Article  Google Scholar 

  28. Hofmann, G. E. et al. The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism to ecosystem perspective. Annu. Rev. Ecol. Evol. Systemat. 41, 127–147 (2010).

    Article  Google Scholar 

  29. Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).

    Article  Google Scholar 

  30. Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    Article  Google Scholar 

  31. Bograd, S. J. et al. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophys. Res. Lett. 35, L12607 (2008).

    Article  Google Scholar 

  32. Cocco, V. et al. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10, 1849–1868 (2013).

    Article  Google Scholar 

  33. Dugdale, R., Goering, J., Barber, R., Smith, R. & Packard, T. Denitrification and hydrogen sulfide in the Peru upwelling region during 1976. Deep Sea Res. 24, 601–608 (1977).

    Article  Google Scholar 

  34. Brüchert, V. et al. in Past and Present Water Column Anoxia 161–193 (Springer, 2006).

    Book  Google Scholar 

  35. Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920–920 (2008).

    Article  Google Scholar 

  36. California Current Acidification Network. http://c-can.msi.ucsb.edu/news/hypoxic-conditions-found-off-southern-washington-coast-update (2012).

  37. Rykaczewski, R. R. & Dunne, J. P. Enhanced nutrient supply to the California current ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37, L21606 (2010).

    Article  Google Scholar 

  38. Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).

    Article  Google Scholar 

  39. Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).

    Article  Google Scholar 

  40. Bakun, A., Field, D. B., Redondo-Rodriguez, A. & Weeks, S. J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Change Biol. 16, 1213–1228 (2010).

    Article  Google Scholar 

  41. Gutiérrez, D. et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 38, L07603 (2011).

    Article  Google Scholar 

  42. Santos, F., Gomez Gesteira, M., Decastro, M. & Alvarez, I. Differences in coastal and oceanic SST trends due to the strengthening of coastal upwelling along the Benguela current system. Contin. Shelf Res. 34, 79–86 (2011).

    Article  Google Scholar 

  43. Di Lorenzo, E., Miller, A. J., Schneider, N. & McWilliams, J. C. The warming of the California current system: Dynamics and ecosystem implications. J. Phys. Oceanogr. 35, 336–362 (2005).

    Article  Google Scholar 

  44. Pardo, P. C., Padín, X. A., Gilcoto, M., Farina-Busto, L. & Pérez, F. F. Evolution of upwelling systems coupled to the long-term variability in sea surface temperature and Ekman transport. Clim. Res. 48, 231–246 (2011).

    Article  Google Scholar 

  45. Wang, M., Overland, J. E. & Bond, N. A. Climate projections for selected large marine ecosystems. J. Mar. Syst. 79, 258–266 (2010).

    Article  Google Scholar 

  46. Ackerman, D. & Schiff, K. Modeling storm water mass emissions to the Southern California Bight. J. Environ. Eng. 129, 308–317 (2003).

    Article  Google Scholar 

  47. Nohara, D., Kitoh, A., Hosaka, M. & Oki, T. Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeorol. 7, 1076–1089 (2006).

    Article  Google Scholar 

  48. Neuer, S. et al. Dust deposition pulses to the eastern subtropical North Atlantic gyre: does ocean's biogeochemistry respond? Glob. Biogeochem. Cycles 18, GB4020 (2004).

    Article  Google Scholar 

  49. Mahowald, N. M. et al. Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu. Rev. Mar. Sci. 1, 245–278 (2009).

    Article  Google Scholar 

  50. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889 (2008).

    Article  Google Scholar 

  51. Doney, S. C. et al. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc. Natl Acad. Sci. USA 104, 14580–14585 (2007).

    Article  Google Scholar 

  52. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  Google Scholar 

  53. Hutchins, D. A., Fu, F-X., Webb, E. A. & Tagliabue, A. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nature Geosci. 6, 790–795 (2013).

    Article  Google Scholar 

  54. Krishnamurthy, A., Moore, J. K., Mahowald, N., Luo, C. & Zender, C. S. Impacts of atmospheric nutrient inputs on marine biogeochemistry. J. Geophys. Res. Biogeosci. 115, G01006 (2010).

    Article  Google Scholar 

  55. Mills, M., Ridame, C., Davey, M., LaRoche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the Eastern Tropical North Atlantic. Nature 429, 292–294 (2004).

    Article  Google Scholar 

  56. Hinga, K. R. Effects of pH on coastal marine phytoplankton. Mar. Ecol. Prog. Ser. 238, 300 (2002).

    Article  Google Scholar 

  57. Gao, K. et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Clim. Change 2, 519–523 (2012).

    Article  Google Scholar 

  58. Hutchins, D. A., Mulholland, M. R. & Fu, F. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22, 128–145 (2009).

    Article  Google Scholar 

  59. Riebesell, U. et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450, 545–548 (2007).

    Article  Google Scholar 

  60. Oschlies, A., Schulz, K. G., Riebesell, U. & Schmittner, A. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export. Glob. Biogeochem. Cycles 22, GB4008 (2008).

    Article  Google Scholar 

  61. Caron, D. A. & Hutchins, D. A. The effects of changing climate on microzooplankton community structure and grazing: drivers, predictions and knowledge gaps. J. Plankton Res. 35, 235–252 (2013).

    Article  Google Scholar 

  62. Farıas, L., Fernández, C., Faúndez, J., Cornejo, M. & Alcaman, M. Chemolithoautotrophic production mediating the cycling of the greenhouse gases N2O and CH4 in an upwelling ecosystem. Biogeosciences 6, 3053–3069 (2009).

    Article  Google Scholar 

  63. Monteiro, P. et al. Variability of natural hypoxia and methane in a coastal upwelling system: oceanic physics or shelf biology? Geophys. Res. Lett. 33, L16614 (2006).

    Article  Google Scholar 

  64. Kock, A., Gebhardt, S. & Bange, H. Methane emissions from the upwelling area off Mauritania (NW Africa). Biogeosciences 5, 1119–1125 (2008).

    Article  Google Scholar 

  65. Naqvi, S. et al. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7, 2159–2190 (2010).

    Article  Google Scholar 

  66. Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).

    Article  Google Scholar 

  67. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Article  Google Scholar 

  68. Ward, B. B., Arp, D. J. & Klotz, M. G. in Nitrification, 416 (Am. Soc. Microbiol., 2011).

    Google Scholar 

  69. Ward, B. B. in Nitrification (eds Ward, B. B., Arp, D. J. & Klotz, M. G.) 326–346 (Am. Soc. Microbiol., 2011).

    Google Scholar 

  70. Ward, B. B., Glover, H. E. & Lipschultz, F. Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru. Deep Sea Res. 36, 1031–1051 (1989).

    Article  Google Scholar 

  71. Freing, A., Wallace, D. W. R. & Bange, H. W. Global oceanic production of nitrous oxide. Phil. Trans. R. Soc. B 367, 1245–1255 (2012).

    Article  Google Scholar 

  72. Beman, J. M. et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc. Natl Acad. Sci. USA 108, 208–213 (2011).

    Article  Google Scholar 

  73. Rudd, J. W. M., Kelly, C. A., Schindler, D. W. & Turner, M. A. Disruption of the nitrogen cycle in acidified lakes. Science 240, 1515–1517 (1988).

    Article  Google Scholar 

  74. Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. USA 106, 4752 (2009).

    Article  Google Scholar 

  75. Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geosci. 6, 228–234 (2013).

    Article  Google Scholar 

  76. Hamersley, M. R. et al. Nitrogen fixation within the water column associated with two hypoxic basins in the Southern California Bight. Aquat. Microb. Ecol. 63, 193–205 (2011).

    Article  Google Scholar 

  77. Fernandez, C., Farıas, L. & Ulloa, O. Nitrogen fixation in denitrified marine waters. PLoS ONE 6, e20539 (2011).

    Article  Google Scholar 

  78. Ramos, A. G. et al. Bloom of the marine diazotrophic cyanobacterium Trichodesmium erythraeum in the Northwest African Upwelling. Mar. Ecol. Prog. Ser. 301, 303–305 (2005).

    Article  Google Scholar 

  79. Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nature Rev. Microbiol. 9 499–508 (2011).

    Article  Google Scholar 

  80. Breitbarth, E., Oschlies, A. & LaRoche, J. Physiological constraints on the global distribution of Trichodesmium: effect of temperature on diazotrophy. Biogeosciences 4, 53–61 (2007).

    Article  Google Scholar 

  81. Boyd, P. W., Strzepek, R., Fu, F-X. & Hutchins, D. A. Environmental control of open ocean phytoplankton groups: now and in the future. Limnol. Oceanogr. 55, 1353–1376 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Support was provided by the USC Dornsife 2020 Research Clusters Fund to D.G.C. and D.A.H., US National Science Foundation grants OCE 0850801 and 0934073 to D.G.C. and OCE 117030687 and 1260490 to D.A.H., and University of Southern California Sea Grant funding to D.A.H. We acknowledge the critical input of N. Gruber which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Capone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplemental Table 1

Interactive environmental change factors affecting coastal upwelling systems. The distinction between drivers and impacts is not necessarily straightforward. (PDF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capone, D., Hutchins, D. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nature Geosci 6, 711–717 (2013). https://doi.org/10.1038/ngeo1916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1916

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology