Abstract
The Arctic is warming faster than any other region in the world. Among the changes already witnessed, the loss of seasonal sea ice is by far the most striking. This large-scale shift in sea-ice cover could affect oceanic emissions of dimethylsulphide — a climate-relevant trace gas generated by ice algae and phytoplankton. During the spring melt period, conditions at the margin of Arctic sea ice favour the growth of these organisms. As a result, high levels of dimethylsulphide can accumulate at the bottom of the ice, in leads, and in the water column at the ice edge during the spring melt season. Production of dimethylsulphide is not limited to the sea-ice edge, however. Significant concentrations have also been detected in the seasonal ice-free zone in spring and summer. Preliminary observations, together with model results, suggest that the production and emission of dimethylsulphide will increase in the Arctic as seasonal sea-ice cover recedes. If it escapes to the atmosphere, this newly generated dimethylsulphide could potentially cool the Arctic climate.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. 105, 26793–26808 (2000).
Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).
Quinn, P. K. & Bates, T. S. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480, 51–56 (2011).
Woodhouse, M. T., Mann, G. W., Carslaw, K. S. & Boucher, O. Sensitivity of cloud condensation nuclei to regional changes in the dimethyl-sulfide emissions. Atmos. Chem. Phys. 13, 2723–2733 (2013).
Chang, R. Y-W. et al. Relating atmospheric and oceanic DMS levels to particle nucleation events in the Canadian Arctic. J. Geophys. Res. 116, D00S03 (2011).
Tunved, P., Ström, J. & Krejci, R. Arctic aerosol life cycle: linking aerosol size distribution observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Alesund, Svalbard. Atmos. Chem. Phys. 13, 3643–3660 (2013).
Perovich, D. K. et al. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys. Res. Lett. 34, L19505 (2007).
Zhang, J. L. et al. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. J. Geophys. Res. 115, C10015 (2010).
Gabric, A. J., Qu, B., Matrai, P. & Hirst, A. The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus B 57, 391–403 (2005).
Qu, B. & Gabric, A. Using genetic algorithm to calibrate a dimethylsulfide production model in the Arctic Ocean. Chin. J. Oceanol. Limnol. 28, 573–582 (2010).
Wassmann, P., Duarte, C. M., Agustí, S. & Sejr, M. K. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).
Overland, J. E. & Wang, M. Future regional Arctic sea ice declines. Geophys. Res. Lett. 34, L17705 (2007).
Arrigo, K. R. et al. Massive phytoplankton blooms under the Arctic sea ice. Science 336, 1408 (2012).
Frey, K. E., Perovich, D. K. & Light, B. The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophys. Res. Lett. 38, L22501 (2011).
Staubes, R. & Georgii, H-W. in Dimethylsulfide: Oceans, Atmosphere and Climate (eds Restelli, G. & Angeletti, G.) 95–102 (ECSC-EEC-EAEC, 1993).
Levasseur, M., Gosselin, M. & Michaud, S. A new source of dimethylsulfide (DMS) for the arctic atmosphere: ice diatoms. Mar. Biol. 121, 381–387 (1994).
Keller, M. D., Bellows, W. K. & Guillard, R. R. L. in Biogenic Sulfur in the Environment (eds Saltzman, E. & Cooper, W. J.) 167–182 (American Chemical Society, 1989).
Steinke, M., Wolfe, G. V. & Kirst, G. O. Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. Prog. Ser. 175, 215–225 (1998).
Niki, T., Kunugi, M. & Otsuki, A. DMSP-lyase activity in five marine phytoplankton species: its potential importance in DMS production. Mar. Biol. 136, 759–764 (2000).
Stefels, J. & Dijkhuizen, L. Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. Prog. Ser. 131, 307–313 (1996).
Kiene, R. P. & Slezak, D. Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol. Oceanogr. Meth. 4, 80–95 (2006).
Kiene, R. P. & Linn, L. J. The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim. Cosmochim. Acta 64, 2797–2810 (2000).
Vila-Costa, M. et al. Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314, 652–654 (2006).
Malmstrom, R. R., Kiene, R. P., Vila, M. & Kirchman, D. L. Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean. Limnol. Oceanogr. 50, 1924–1931 (2005).
Kiene, R. P., Linn, L. J. & Bruton, J. A. New and important roles for DMSP in marine microbial communities. J. Sea Res. 43, 209–224 (2000).
Yoch, D. C. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 68, 5804–5815 (2002).
Simó, R., Archer, S. D., Pedrós-Alió, C., Gilpin, L. & Stelfox-Widdicombe, C. E. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol. Oceanogr. 47, 53–61 (2002).
Todd, J. et al. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315, 666–669 (2007).
Stefels, J., Steinke, M., Turner, S., Malin, G. & Belviso, S. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling. Biogeochemistry 83, 245–275 (2007).
Wolfe, G. V., Levasseur, M., Cantin, G. & Michaud, S. Microbial consumption and production of dimethyl sulfide (DMS) in the Labrador Sea. Aquat. Microb. Ecol. 18, 197–205 (1999).
Simó, R. From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales. Can. J. Fish. Aquat. Sci. 61, 673–684 (2004).
Bates, T. S. et al. The cycling of sulfur in surface waters of the Northeast Pacific. J. Geophys. Res. 99, 7835–7843 (1994).
Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–320 (2002).
Simó, R. & Pedrós-Alió, C. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402, 396–399 (1999).
Toole, D. A. & Siegel, D. A. Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop. Geophys. Res. Lett. 31, L09308 (2004).
Liss, P. S. et al. in Ocean–Atmosphere Interactions of Gases and Particles (eds Liss, P. S. & Johnson, M. T.) (Springer, in the press).
Matrai, P. A. & Vernet, M. Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea: dimethyl sulfide and dimethylsulfoniopropionate budgets. J. Geophys. Res. 102, 22965–22979 (1997).
Garneau, M-E., Roy, S., Lovejoy, C., Gratton, Y. & Vincent, W. F. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic. J. Geophys. Res. 113, C07S91 (2008).
Gosselin, M., Legendre, L., Demers, S. & Ingram R. G. Responses of sea ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson Bay). Can. J. Fish. Aquat. Sci. 42, 999–1006 (1985).
Lavoie, D., Denman, K. & Michel, C. Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Archipelago). J. Geophys. Res. 110, C11009 (2005).
Gradinger, R. Sea ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort seas during May/June 2002. Deep-Sea Res. II 56, 1201–1212 (2009).
Matrai, P. & Apollonio, S. New estimates of microalgae production based upon nitrate reductions under sea ice in the Canadian shelf seas and the Canada Basin of the Arctic Ocean. Mar. Biol. 160, 1297–1309 (2013).
Różańska, M., Gosselin, M., Poulin, M., Wiktor, J. M. & Michel, C. Influence of environmental factors on the development of bottom ice protist communities during the winter-spring transition. Mar. Ecol. Prog. Ser. 386, 43–59 (2009).
Deal, C. et al. Large-scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992. J. Geophys. Res. 116, C07004 (2011).
Fortier, M., Fortier, L., Michel, C. & Legendre, L. Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar. Ecol. Prog. Ser. 225, 1–16 (2002).
Michel, C., Legendre, L., Ingram, G., Gosselin, M. & Levasseur, M. Carbon budget of sea ice algae in spring: evidence of a significant transfer to zooplankton grazers. J. Geophys. Res. 101, 18345–18360 (1996).
Bouillon, R-C., Lee, P. A., de Mora, S. J., Levasseur, M. & Lovejoy, C. Vernal distribution of dimethylsulphide, dimethylsulphoniopropionate, and dimethylsulphoxide in the North Water in 1998. Deep-Sea Res. II 49, 5171–5189 (2002).
Lee, P. A. et al. Particulate dimethylsulfoxide in Arctic sea ice algal communities: the cryoprotectant hypothesis revisited. J. Phycol. 37, 488–499 (2001).
Uzuka, M. A Time series observation of DMSP production in the fast ice zone near Barrow (extended abstract). Tôhoku Geophys. J. 36, 439–442 (2003).
Asher, E. C., Dacey, J. W. H., Mills, M. M., Arrigo, K. R. & Tortell, P. D. High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice. Geophys. Res. Lett. 38, L23609 (2011).
Trevena, A. J. & Jones, G. B. Dimethylsulphide and dimethylsulfoniopropionate in Antarctic sea ice and their release during sea ice melting. Mar. Chem. 98, 210–222 (2006).
Delille, B. et al. Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol. Oceanogr. 52, 1367–1379 (2007).
Tison, J-L., Brabant, F., Dumont, I. & Stefels, J. High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica. J. Geophys. Res. 115, G04044 (2010).
Gosselin, M. et al. The 1994 Arctic Ocean Section: The First Major Scientific Crossing of the Arctic Ocean (eds Tucker, T. & Cate, D.) 42–44 (US Army Cold Regions Research and Engineering Laboratory, Special Report 96–23, 1996).
Gilson, G. Composition en DMS et Composés Soufrés Associés de la Glace de Mer Annuelle Arctique en Mer de Beaufort (CFL, Canada) et Implication pour les Flux de DMS vers l'Atmosphère (Université Libre de Bruxelles, 2010).
Leck, C. & Persson, C. The central Arctic Ocean as a source of dimethyl sulfide: seasonal variability in relation to biological activity. Tellus B 48, 156–177 (1996).
Lüthje, M., Feltham, D. L., Taylor, P. D. & Worster, M. G. Modeling the summertime evolution of sea ice melt ponds. J. Geophys. Res. 111, 1–17 (2006).
Sharma, S. et al. Flux estimation of oceanic dimethyl sulfide around north America. J. Geophys. Res. 104, 21327–21342 (1999).
Gradinger, R. Occurrence of an algal bloom under Arctic pack ice. Mar. Ecol. Prog. Ser. 131, 301–305 (1996).
Stabeno, P. J., Schumacher, J. D., Davis, R. F. & Napp, J. M. Under-ice observations of water column temperature, salinity and spring phytoplankton dynamics: Eastern Bering Sea. J. Mar. Res. 56, 239–255 (1998).
Lee, S. H. et al. Holes in progressively thinning Arctic sea ice lead to new ice algae habitat. Oceanography 24, 302–308 (2011).
Apollonio, S. & Matrai, P. Marine primary production in the Canadian Arctic, 1956, 1961–1963 Polar. Biol. 34, 767–774 (2011).
Booth, B. C. & Horner, R. A. Microalgae on the Arctic Ocean Section, 1994: species abundance and biomass. Deep-Sea Res. II 44, 1607–1622 (1997).
Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).
Perrette, M., Yool, A., Quartly, G. D. & Popova, E. E. Near-ubiquity of ice-edge blooms in the Arctic. Biogeosci. Discuss. 7, 8123–8142 (2010).
Qu, B., Gabric, A. J. & Matrai, P. The satellite-derived distribution of chlorophyll a and its relation to ice cover, radiation and sea surface temperature in the Barents Sea. Polar Biol. 29, 196–210 (2005).
Mundy, C. J. et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 36, L17601 (2009).
Galí, M. & Simó, R. Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer receding ice edge. Mar. Chem. 122, 105–117 (2010).
Tremblay, J-É. et al. Climate forcing multiplies biological productivity in the coastal Arctic Ocean. Geophys. Res. Lett. 38, L18604 (2011).
Elliott, S. et al. Pan-Arctic simulation of coupled nutrient-sulfur cycling due to sea ice biology: preliminary results. J. Geophys. Res. 117, G01016 (2012).
Popova, E. E. et al. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J. Geophys. Res. 117, C00D12 (2012).
Matrai, P. A., Vernet, M. & Wassmann, P. Relating temporal and spatial patterns of DMSP in the Barents Sea to phytoplankton biomass and productivity. J. Mar. Syst. 67, 83–101 (2007).
Motard-Côté, J. et al. Distribution and metabolism of dimethylsulfoniopropionate (DMSP) and phylogenetic affiliation of DMSP-assimilating bacteria in northern Baffin Bay/Lancaster Sound. J. Geophys. Res. 117, C00G11 (2012).
Luce, M. et al. Distribution and microbial metabolism of dimethylsulfoniopropionate and dimethylsulfide during the 2007 Arctic ice minimum. J. Geophys. Res. 116, C00G06 (2011).
Park, K-T. et al. Linking atmospheric dimethyl sulfide and the Arctic Ocean spring bloom. Geophys. Res. Lett. 40, 1–6 (2013).
Humphries, G. R. W., Deal, C. J., Elliott, S. & Huettmann, F. Spatial predictions of sea surface dimethylsulfide concentrations in the high Arctic. Biogeochemistry 110, 287–301 (2012).
Gabric, A. J., Simó, R., Crop, R. A., Hirst, A. C. & Dachs, J. Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Glob. Biogeochem. Cycles 18, GB2014 (2004).
Intrieri, J. M. et al. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 107, C108039 (2001).
Coupel, P. et al. Phytoplankton distribution in unusually low sea ice cover over the Pacific Arctic. Biogeosciences 9, 4835–4850 (2012).
Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the Arctic Ocean freshens. Science 326, 539 (2009).
Hegseth, E. N. & Sundfjord, A. Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J. Mar. Syst. 74, 108–119 (2008).
Harada, N. et al. Enhancement of coccolithophorid blooms in the Bering Sea by recent environmental changes. Glob. Biogeochem. Cycles 26, GB2036 (2012).
Vance, C. et al. Aquamarine waters recorded for first time in eastern Bering Sea. Eos 79, 121–126 (1998).
Martin, J. et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar. Ecol. Prog. Ser. 412, 69–84 (2010).
Le Clainche, Y. et al. Modeling analysis of the effect of iron enrichment on DMS dynamics in the NE Pacific (SERIES experiment). J. Geophys. Res. 111, C01011 (2006).
Archer, S. D. et al. A. Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosci. Discuss. 9, 12803–12843 (2012).
Randall, K. et al. Arctic sea ice: source or sink for nitrous oxide? J. Geophys. Res. 117, C00G15 (2012).
Shooter, D., de Mora, S. J., Grout, A., Wylie, D. J. & Zhiyun, H. The chromatographic analysis of reduced sulfur gases in Antarctic waters following preconcentration onto Tenax. Int. J. Environ. Anal. Chem. 47, 239–249 (1992).
Scarratt, M. G. et al. Production and consumption of dimethylsulfide (DMS) in North Atlantic waters. Mar. Ecol. Prog. Ser. 204, 13–26 (2000).
Bates, S. S. & Cota, G. F. Fluorescence induction and photosynthetic responses or arctic ice algae to sample treatment and salinity. J. Phycol. 22, 421–429 (1986).
Matrai, P. A., Tranvik, L., Leck, C. & Knulst, J. C. Are high Arctic surface microlayers a potential source of aerosol organic precursors? Mar. Chem. 108, 109–122 (2008).
Lee, P. A., Saunders, P. A., de Mora, S. J., Deibel, D. & Levasseur, M. Influence of copepod grazing on concentrations of dissolved dimethylsulfoxide and related sulfur compounds in the North Water, northern Baffin Bay. Mar. Ecol. Prog. Ser. 255, 235–248 (2003).
Damm, E., Kiene, R. P., Schwarz, J., Falck, E. & Dieckmann, G. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar. Chem. 109, 45–59 (2008).
Vila-Costa, M., Simó, R., Alonso-Saez, L. & Pedros-Alio, C. Number and phylogenetic affiliation of bacteria assimilating dimethylsulfoniopropionate and leucine in the ice-covered coastal Arctic Ocean. J. Mar. Syst. 74, 957–963 (2008).
Jakobssen, M. et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys. Res. Lett. 39, L12609 (2012).
Reisch, C. R., Moran, M. A. & Whitman W. B. Bacterial catabolism of dimethysulfoniopropionate. Front. Microbiol. 2, 1–12 (2012).
Zubkov, M. V. et al. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res. II 49, 3017–3038 (2002).
Sharma, S. et al. Influence of transport and ocean ice extent on biogenic aerosol sulphur in the Arctic atmosphere. J. Geophys. Res. 117, D12209 (2012).
O'Dwyer, J. et al. Methanesulfonic acid in a Svalbard ice core as an indicator of ocean climate. Geophys. Res. Lett. 27, 1159–1162 (2000).
Isaksson, E., Kekonen, T., Moore, J. & Mulvaney, R. The methanesulfonic acid (MSA) record in a Svalbard ice core. Ann. Glaciol. 42, 345–351 (2005).
Heintzenberg, J. & Leck, C. The summer aerosol in the central Arctic 1991–2008: Did it change or not? Atmos. Chem. Phys. 12, 3969–3983 (2010).
Legrand, M. Ice-core records of atmospheric sulphur. Phil. Trans. R. Soc. Lond. B 352, 241–250 (1997).
Abram, N. J., Mulvaney, R., Wolff, E. W. & Mudelsee, M. Ice core records as sea ice proxies: an evaluation from the Weddell Sea region of Antarctica. J. Geophys. Res. 112, D15101 (2007).
Acknowledgements
I thank M. Lizotte (Québec-Océan, Université Laval, Québec, Canada), M. Gosselin (Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, Canada), M. Scarratt and S. Michaud (Maurice Lamontagne Institute, Department of Fisheries and Ocean Canada, Mont-Joli, Quebec, Canada), J. Abbatt (University of Toronto, Toronto, Ontario, Canada) and R. Leaitch (Environment Canada, Downsview, Ontario, Canada) for providing comments on early versions of this manuscript. I thank M. Gosselin (Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, Canada), N. Simard and S. Michaud (Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada), S. Sharma (Environment Canada, Downsview, Ontario, Canada), L. Barrie (Department of Geological Sciences, Stockholm University, Stockholm, Sweden) and T.S. Bates (School of Oceanography, University of Washington, Seattle, Washington, USA) for releasing unpublished data from the 1994 Arctic Ocean Section programme (Fig. 6), and M. Gourdal for releasing data from the Arctic-Ice Covered Ecosystem project (Fig. 5).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Levasseur, M. Impact of Arctic meltdown on the microbial cycling of sulphur. Nature Geosci 6, 691–700 (2013). https://doi.org/10.1038/ngeo1910
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo1910
This article is cited by
-
Effects of elevated temperature and acidification on sulfate assimilation and reduction of microalgae
Journal of Applied Phycology (2023)
-
Analysis of Seasonal Differences of Chlorophyll, Dimethylsulfide, and Ice Between the Greenland Sea and the Barents Sea
Journal of Ocean University of China (2023)
-
Vertical Chlorophyll and Dimethylsulfide Profile Simulations in Southern Greenland Sea
Journal of Ocean University of China (2022)
-
The role of a changing Arctic Ocean and climate for the biogeochemical cycling of dimethyl sulphide and carbon monoxide
Ambio (2022)
-
Commentary regarding “Simulated perturbation in the sea-to-air flux of dimethylsulfide and the impact on polar climate”
Journal of Oceanology and Limnology (2021)