Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The proportionality between relative plate velocity and seismicity in subduction zones

Subjects

Abstract

Maximum earthquake magnitude and the rate of seismic activity apparently differ among subduction zones. This variation is attributed to factors such as subduction zone temperature and stress, and the type of material being subducted1,2,3,4,5. The relative velocity between the downgoing and overriding plates controls their tectonic deformation. It is also thought to correlate with seismicity1,2,6,7,8. Here I use the epidemic type aftershock sequence model9,10 to calculate the background seismicity rate—the frequency of seismic events above magnitude 4.5—for 117 sections of subduction zones worldwide, during the past century. I demonstrate a proportionality relationship whereby relative plate velocity correlates positively with seismicity rate. This relationship is prominent in the southwestern Pacific Ocean. However, although seismically active, this region has not experienced a magnitude 9 earthquake since 1900. In contrast, the Cascadia, Nankai, southern Chilean and Alaskan subduction zones exhibit low background seismicity rates, yet have experienced magnitude 9 earthquakes in the past century. Slow slip occurs in many of these regions, implying that slow deformation may aid nucleation of very large earthquakes. The proportionality relationship could be used to assess the seismic risk between two endmembers: active subduction zones that generate moderate earthquakes and quiet subduction zones that generate extremely large earthquakes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locations of the 117 study regions with estimated background rates of seismicity and relative plate motions.
Figure 2: Summary of ETAS inversion analyses.
Figure 3: ETAS inversion analyses using a long-term catalogue in Japan.
Figure 4: Relationship between the velocity of relative plate motion and μ.

Similar content being viewed by others

References

  1. Uyeda, S. & Kanamori, H. Back-arc opening and the mode of subduction. J. Geophys. Res. 84, 1049–1061 (1979).

    Article  Google Scholar 

  2. Ruff, L. & Kanamori, H. Seismicity and the subduction process. Phys. Earth Planet. Inter. 23, 240–252 (1980).

    Article  Google Scholar 

  3. Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004).

    Article  Google Scholar 

  4. Heuret, A., Conrad, C. P., Funiciello, F., Lallemand, S. & Sandri, L. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophys. Res. Lett. 39, L05304 (2012).

    Article  Google Scholar 

  5. Scholz, C. H. & Campos, J. The seismic coupling of subduction zones revisited. J. Geophys. Res. 117, B05310 (2012).

    Article  Google Scholar 

  6. Kreemer, C., Holt, W. E. & Haines, A. J. in Plate Boundary Zones (eds Stein, S. & Freymueller, J. T.) (American Geophysical Union, 2002).

    Google Scholar 

  7. Bird, P., Kagan, Y. Y., Jackson, D. D., Schoenberg, F. P. & Werner, M. J. Linear and nonlinear relations between relative plate velocity and seismicity. Bull. Seismol. Soc. Am. 99, 3097–3113 (2009).

    Article  Google Scholar 

  8. Singh, S. K., Comte, D. & Pardo, M. Background seismicity and strength of coupling in the subduction zones. Bull. Seismol. Soc. Am. 82, 2114–2125 (1992).

    Google Scholar 

  9. Ogata, Y. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83, 9–27 (1988).

    Article  Google Scholar 

  10. Ogata, Y. Seismicity analysis through point-process modeling: A review. Pure Appl. Geophys. 155, 471–507 (1999).

    Article  Google Scholar 

  11. Stein, S. & Okal, E. A. Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull. Seismol. Soc. Am. 97, S279–S295 (2012).

    Article  Google Scholar 

  12. McCaffrey, R. Global frequency of magnitude 9 earthquakes. Geology 36, 263–266 (2008).

    Article  Google Scholar 

  13. Kagan, Y. & Jackson, D. D. Tohoku earthquake: A surprise? Bull. Seismol. Soc. Am. 103, 1181–1194 (2013).

    Article  Google Scholar 

  14. Holtkamp, S. G. & Brudzinski, M. R. Earthquake swarms in circum-Pacific subduction zones. Earth Planet. Sci. Lett. 305, 215–225 (2011).

    Article  Google Scholar 

  15. Chu, A., Schoenberg, F. P., Bird, P., Jackson, D. D. & Kagan, Y. Y. Comparison of ETAS parameter estimates across different global tectonic zones. Bull. Seismol. Soc. Am. 101, 2323–2339 (2011).

    Article  Google Scholar 

  16. McGuire, J. J., Boettcher, M. S. & Jordan, T. H. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults. Nature 434, 457–461 (2005).

    Article  Google Scholar 

  17. Llenos, A. L., McGuire, J. J. & Ogata, Y. Modeling seismic swarms triggered by aseismic transients. Earth Planet. Sci. Lett. 281, 59–69 (2009).

    Article  Google Scholar 

  18. Kumazawa, T., Ogata, Y. & Toda, S. Precursory seismic anomalies and transient crustal deformation prior to the 2008 Mw = 6.9 Iwate-Miyagi Nairiku, Japan, earthquake. J. Geophys. Res. 115, B10312 (2010).

    Article  Google Scholar 

  19. Okutani, T. & Ide, S. Statistic analysis of swarm activities around the Boso Peninsula, Japan: Slow slip events beneath Tokyo Bay? Earth Planets Space 63, 419–426 (2011).

    Article  Google Scholar 

  20. Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    Article  Google Scholar 

  21. Mooney, W. D., Laske, G. & Masters, T. G. CRUST 5.1: A global crustal model at 5°×5°. J. Geophys. Res. 103, 727–747 (1998).

    Article  Google Scholar 

  22. Kanamori, H. & Anderson, D. L. Theoretical basis of some empirical relations in seismology. J. Geophys. Res. 65, 1073–1095 (1998).

    Google Scholar 

  23. Kerr, R. A. More megaquakes on the way? That depends on your statistics. Science 332, 411 (2011).

    Article  Google Scholar 

  24. Daub, E. G., Ben-Naim, E., Guyer, R. A. & Johnson, P. A. Are megaquakes clustered? Geophys. Res. Lett. 39, L06308 (2012).

    Article  Google Scholar 

  25. Satake, K., Shimazaki, K., Tsuji, Y. K. & Ueda, K. Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature 379, 246–249 (1996).

    Article  Google Scholar 

  26. Schwartz, S. Y. & Rokosky, J. M. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys. 45, RG3004 (2007).

    Article  Google Scholar 

  27. Beroza, G. C. S. & Ide, S. Slow earthquakes and non-volcanic tremor. Annu. Rev. Earth Planet. Sci. 39, 271–296 (2011).

    Article  Google Scholar 

  28. Ide, S. Variety and spatial heterogeneity of tectonic tremor worldwide. J. Geophys. Res. 117, B03302 (2012).

    Article  Google Scholar 

  29. Heki, K. & Kataoka, T. On the biannually repeating slow-slip events at the Ryukyu Trench, southwestern Japan. J. Geophys. Res. 113, B11402 (2008).

    Article  Google Scholar 

  30. Lanza, J. C. V. et al. A slow slip event and synchronous seismicity in the northern Peru subduction zone. EOS Trans. AGU (Fall Meet. Suppl.) 93, S41S03 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (23244090) and MEXT KAKENHI (21107007). Figures were prepared using Generic Mapping Tool (Wessel and Smith, 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ide.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide, S. The proportionality between relative plate velocity and seismicity in subduction zones. Nature Geosci 6, 780–784 (2013). https://doi.org/10.1038/ngeo1901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing