Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2

Subjects

Abstract

The Ocean Anoxic Event 2 (OAE2) about 93.5 million years ago was marked by high atmospheric CO2 concentration, rapid global warming and marine anoxia and euxinia. The event lasted for about 440,000 years and led to habitat loss and mass extinction. The marine anoxia is thought to be linked to enhanced biological productivity, but it is unclear what triggered the increased production and what allowed the subsequent rapid climate recovery. Here we use lithium isotope measurements from carbonates spanning the interval including OAE2 to assess the role of silicate weathering. We find the lightest values of the Li isotope ratio (δ7Li) during OAE2, indicating high levels of weathering—and therefore atmospheric CO2 removal—which we attribute to an enhanced hydrological cycle. We use a geochemical model to simulate the evolution of δ7Li and the Ca, Sr and Os isotope tracers. Our simulations suggest a scenario in which the eruption of a large igneous province led to high atmospheric CO2 concentrations and rapid global warming, which initiated OAE2. The simulated warming was accompanied by a roughly 200,000 year pulse of accelerated weathering of mafic silicate rocks, which removed CO2 from the atmosphere. The weathering also delivered nutrients to the oceans that stimulated primary productivity. We suggest that this process, together with the burial of organic carbon, allowed the rapid recovery and stabilization from the greenhouse state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample location map.
Figure 2: Li isotope ratios of the marine carbonate sections measured.
Figure 3: Expanded view of the Li isotope excursions from all analysed sections, plotted against time after onset of the C–T OAE.
Figure 4: Final best-fit dynamic model of Li, Sr, Ca and Os isotopes.

Similar content being viewed by others

References

  1. Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).

    Article  Google Scholar 

  2. Sinninghe Damsté, J. S., Kuypers, M. M. M., Pancost, R. D. & Schouten, S. The carbon isotopic response of algae, (cyano)bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle: Insights from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367). Org. Geochem. 39, 1703–1718 (2008).

    Article  Google Scholar 

  3. Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G. J., Pross, J. & Schouten, S. A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 293, 97–103 (2010).

    Article  Google Scholar 

  4. Parente, M. et al. Stepwise extinction of larger foraminifers at the Cenomanian–Turonian boundary: A shallow-water perspective on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event). Geology 36, 715–718 (2008).

    Article  Google Scholar 

  5. Jones, C. E. & Jenkyns, H. C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci. 301, 112–149 (2001).

    Article  Google Scholar 

  6. Voigt, S. et al. The Cenomanian–Turonian of the Wunstorf section– (North Germany): Global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2. Newsl. Stratigr. 43, 65–89 (2008).

    Article  Google Scholar 

  7. Frijia, G. & Parente, M. Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: Short-term perturbations of marine 87Sr/86Sr during the oceanic anoxic event 2. Palaeogeogr., Palaeoclimatol., Palaeoecol. 261, 15–29 (2008).

    Article  Google Scholar 

  8. Blättler, C. L., Jenkyns, H. C., Reynard, L. M. & Henderson, G. M. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309, 77–88 (2011).

    Article  Google Scholar 

  9. Turgeon, S. C. & Creaser, R. A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454, 323–327 (2008).

    Article  Google Scholar 

  10. Palmer, M. R. & Edmond, J. M. Controls over the strontium isotope composition of river water. Geochim. Cosmochim. Acta 56, 2099–2111 (1992).

    Article  Google Scholar 

  11. Galy, A., France-Lanord, C. & Derry, L. A. The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh. Geochim. Cosmochim. Acta 63, 1905–1925 (1999).

    Article  Google Scholar 

  12. Huh, Y. in Monsoon Evolution and Tectonics–Climate Linkage in Asia, Vol. 342 (eds Clift, P. D., Tada, A. & Zheng, H.) 129–151 (2010).

    Google Scholar 

  13. Marriott, C. S., Henderson, G. M., Belshaw, N. S. & Tudhope, A. W. Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet. Sci. Lett. 222, 615–624 (2004).

    Article  Google Scholar 

  14. Pogge von Strandmann, P. A. E., Burton, K. W., James, R. H., van Calsteren, P. & Gislason, S. R. Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chem. Geol. 270, 227–239 (2010).

    Article  Google Scholar 

  15. Vigier, N. et al. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim. Cosmochim. Acta 72, 780–792 (2008).

    Article  Google Scholar 

  16. Burton, K. W. & Vigier, N. in Handbook of Environmental Isotope Geochemistry (ed. Baskaran, M.) 41–59 (Springer, 2011).

    Google Scholar 

  17. Tomascak, P. B. in Geochemistry of Non-Traditional Stable Isotopes, Vol. 55 (eds Johnson, C. M., Beard, B. L. & Albarède, F.) 153–195 (Reviews in Mineralogy & Geochemistry, 2004).

    Book  Google Scholar 

  18. Kisakürek, B., James, R. H. & Harris, N. B. W. Li and δ7Li in Himalayan rivers: Proxies for silicate weathering? Earth Planet. Sci. Lett. 237, 387–401 (2005).

    Article  Google Scholar 

  19. Millot, R., Vigier, N. & Gaillardet, J. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim. Cosmochim. Acta 74, 3897–3912 (2010).

    Article  Google Scholar 

  20. Elliott, T., Thomas, A., Jeffcoate, A. & Niu, Y. L. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443, 565–568 (2006).

    Article  Google Scholar 

  21. Teng, F. Z. et al. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta 68, 4167–4178 (2004).

    Article  Google Scholar 

  22. Lemarchand, E., Chabaux, F., Vigier, N., Millot, R. & Pierret, M. C. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France). Geochim. Cosmochim. Acta 74, 4612–4628 (2010).

    Article  Google Scholar 

  23. Huh, Y., Chan, L. H. & Edmond, J. M. Lithium isotopes as a probe of weathering processes: Orinoco river. Earth Planet. Sci. Lett. 194, 189–199 (2001).

    Article  Google Scholar 

  24. Pogge von Strandmann, P. A. E. et al. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth Planet. Sci. Lett. 251, 134–147 (2006).

    Article  Google Scholar 

  25. West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005).

    Article  Google Scholar 

  26. Hathorne, E. C. & James, R. H. Temporal record of lithium in seawater: a tracer for silicate weathering? Earth Planet. Sci. Lett. 246, 393–406 (2006).

    Article  Google Scholar 

  27. Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    Article  Google Scholar 

  28. Pogge von Strandmann, P. A. E. et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland. Earth Planet. Sci. Lett. 339–340, 11–23 (2012).

    Article  Google Scholar 

  29. Jarvis, I., Gale, A. S., Jenkyns, H. C. & Pearce, M. A. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian– Campanian (99.6–70.6 Myr). Geol. Mag. 143, 561–608 (2006).

    Article  Google Scholar 

  30. Jenkyns, H. C., Matthews, A., Tsikos, H. & Erel, Y. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian–Turonian oceanic anoxic event. Paleoceanography 22, PA3208 (2007).

    Article  Google Scholar 

  31. Tsikos, H. et al. Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities. J. Geol. Soc. 161, 711–719 (2004).

    Article  Google Scholar 

  32. Sageman, B. B., Meyers, S. R. & Arthur, M. A. Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype. Geology 34, 125–128 (2006).

    Article  Google Scholar 

  33. Voigt, S., Gale, A. S. & Flögel, S. Midlatitude shelf seas in the Cenomanian–Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography 19, PA4020 (2004).

    Article  Google Scholar 

  34. Zhang, L., Chan, L-H. & Gieskes, J. M. Lithium isotope geochemistry of pore waters from ocean drilling program Sites 918 and 919, Irminger Basin. Geochim. Cosmochim. Acta 62, 2437–2450 (1998).

    Article  Google Scholar 

  35. James, R. H. & Palmer, M. R. Marine geochemical cycles of the alkali elements and boron: The role of sediments. Geochim. Cosmochim. Acta 64, 3111–3122 (2000).

    Article  Google Scholar 

  36. Scholz, F. et al. Lithium isotope geochemistry of marine pore waters—Insights from cold seep fluids. Geochim. Cosmochim. Acta 74, 3459–3475 (2010).

    Article  Google Scholar 

  37. McArthur, J. M. et al. in High Resolution Stratigraphy, Vol. 70 195–209 (Geological Society of London Special Publication, 1993).

    Google Scholar 

  38. Marriott, C. S., Henderson, G. M., Crompton, R., Staubwasser, M. & Shaw, S. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chem. Geol. 212, 5–15 (2004).

    Article  Google Scholar 

  39. Peucker-Ehrenbrink, B. & Ravizza, G. The marine osmium isotope record. Terra Nova 12, 205–219 (2000).

    Article  Google Scholar 

  40. Huber, B. T., Norris, R. D. & MacLeod, K. G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30, 123–126 (2002).

    Article  Google Scholar 

  41. Sahagian, D. Epeirogenic motions of Africa as inferred from Cretaceous shoreline deposits. Tectonics 7, 125–138 (1988).

    Article  Google Scholar 

  42. Vigier, N., Gislason, S. R., Burton, K. W., Millot, R. & Mokadem, F. The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland. Earth Planet. Sci. Lett. 287, 434–441 (2009).

    Article  Google Scholar 

  43. Kuroda, J. et al. Contemporaneous massive subaerial volcanism and late Cretaceous Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 256, 211–223 (2007).

    Article  Google Scholar 

  44. Wimpenny, J. et al. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim. Cosmochim. Acta 74, 5259–5279 (2010).

    Article  Google Scholar 

  45. Monteiro, F. M., Pancost, R. D., Ridgwell, A. & Donnadieu, Y. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian–Turonian oceanic anoxic event (OAE2): Model-data comparison. Paleoceanography 27, PA4209 (2012).

    Article  Google Scholar 

  46. Gı´slason, S. R., Arnorsson, S. & Armannsson, H. Chemical weathering of basalt in southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. Am. J. Sci. 296, 837–907 (1996).

    Article  Google Scholar 

  47. Gı´slason, S. R., Oelkers, E. & Snorrason, A. Role of river-suspended material in the global carbon cycle. Geology 34, 49–52 (2006).

    Article  Google Scholar 

  48. Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).

    Article  Google Scholar 

  49. Dessert, C., Dupré, B., Gaillardet, J., François, L. M. & Allègre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273 (2003).

    Article  Google Scholar 

  50. Gaillardet, J., Dupré, B. & Allègre, C. J. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim. Cosmochim. Acta 63, 4037–4051 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

N. Belshaw and P. Holdship are thanked for assistance with developing the isotope ratio and trace element analysis methods. C. Blättler is thanked for discussions on Ca isotopes. P.A.E.P.v.S. is funded by NERC Research Fellowship NE/I020571/1. This manuscript was greatly improved by comments from Sambuddha Misra.

Author information

Authors and Affiliations

Authors

Contributions

P.A.E.P.v.S. carried out the Li isotope and trace element analyses, wrote the manuscript and constructed the models. H.C.J. collected the samples and edited the manuscript. R.G.W. measured Sr isotope data from Raia del Pedale.

Corresponding author

Correspondence to Philip A. E. Pogge von Strandmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1083 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogge von Strandmann, P., Jenkyns, H. & Woodfine, R. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geosci 6, 668–672 (2013). https://doi.org/10.1038/ngeo1875

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing