Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong inheritance of texture between perovskite and post-perovskite in the D′′ layer



About 200 km above the core–mantle boundary, the D′′ seismic discontinuity marks the depth where magnesium silicate perovskite—the main mantle mineral—is transformed into its high-pressure phase of post-perovskite1,2. Observations of seismic anisotropy within the D′′ region are inferred to arise from textures within post-perovskite3,4,5 that are created by flow in the deep mantle. Specifically, mantle flow is thought to cause post-perovskite to deform, creating a lattice-preferred orientation within the post-perovskite6,7,8,9,10. However, it is difficult to explain all of the observed patterns of seismic anisotropy in the D′′ region from this deformation mechanism alone. Here we use a low-pressure fluoride analogue system11 to study the transformation from perovskite to post-perovskite in laboratory experiments. We find that post-perovskite can inherit texture from the perovskite phase. If a similar transformation mechanism operates in the Earth, post-perovskite will inherit textures from deformed perovskite and vice versa, as lower-mantle material passes into and out of the D′′ region. We find that this textural inheritance, combined with lattice-preferred orientation in post-perovskite, can explain the observed patterns of anisotropy in the lowermost mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission electron micrograph of partially transformed NaNiF3 perovskite.
Figure 2: Seismic anisotropy predicted for the transformation from post-perovskite to perovskite.

Similar content being viewed by others


  1. Murakami, M., Hirose, K., Kawamora, K., Sata, N. & Ohishi, Y. Post perovskite phase transition in MgSiO3 . Science 304, 855–858 (2004).

    Article  Google Scholar 

  2. Oganov, A. R. & Ono, S. theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D′′ layer. Nature 430, 445–448 (2004).

    Article  Google Scholar 

  3. Nowacki, A., Wookey, J. & Kendall, J. M. Deformation of the lowermost mantle from seismic anisotropy. Nature 467, 1091–1906 (2010).

    Article  Google Scholar 

  4. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).

    Article  Google Scholar 

  5. Wookey, J. & Kendall, J. M. Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy. Earth Planet. Sci. Lett. 275, 32–42 (2008).

    Article  Google Scholar 

  6. Merkel, S. et al. Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311, 644–646 (2006).

    Article  Google Scholar 

  7. Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J. I. & Yoneda, A. Origin of seismic anisotropy in the D layer inferred from shear deformation experiments on postperovskite phase. Earth Planet. Sci. Lett. 252, 372–378 (2006).

    Article  Google Scholar 

  8. Merkel, S. et al. Deformation of (Mg,Fe)SiO3 post-perovskite and D anisotropy. Science 316, 1729–1732 (2007).

    Article  Google Scholar 

  9. Walte, N., Heidelbach, F., Miyajima, N. & Frost, D. Texture development and TEM analysis of deformed CaIrO3: Implications for the D layer at the core-mantle boundary. Geophys. Res. Lett. 34, L08306 (2007).

    Article  Google Scholar 

  10. Miyagi, L., Kanitpanyacharoen, W., Stackhouse, S., Militzer, B. & Wenk, H. R. The enigma of post-perovskite anisotropy: Deformation versus transformation textures. Phys. Chem. Mineral. 38, 665–678 (2011).

    Article  Google Scholar 

  11. Dobson, D. P., Hunt, S. A., Lindsay-Scott, A. & Wood, I. G. Towards better analogues for MgSiO3 post-perovskite: NaCoF3 and NaNiF3, two new recoverable post-perovskite phases. Phys. Earth. Planet. Inter. 189, 171–175 (2011).

    Article  Google Scholar 

  12. Oganov, A. R., Martonak, R., Laio, A., Raiteri, P. & Parrinello, M. Anisotropy of Earth’s D layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144 (2005).

    Article  Google Scholar 

  13. Tschauner, O. et al. Possible structural polymorphism in Al-bearing magnesium silicate post-perovskite. Am. Mineral. 93, 533–539 (2008).

    Article  Google Scholar 

  14. Carrez, Ph., Ferré, D. & Cordier, P. Peierls–Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Phil. Mag. 87, 3229–3247 (2007).

    Article  Google Scholar 

  15. Mainprice, D., Tommasi, A., Ferré, D., Carrez, P. & Cordier, P. Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth Planet. Sci. Lett. 271, 135–144 (2008).

    Article  Google Scholar 

  16. Hernlund, J. W., Thomas, T. & Tackley, P. J. A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434, 882–886 (2005).

    Article  Google Scholar 

  17. Miyagi, L., Kanitpanyacharoen, W., Kaercher, P., Lee, K. K. M. & Wenk, H. R. Slip systems in MgSiO3 postperovskite: Implications for D′′ anisotropy. Science 329, 1636–1638 (2010).

    Article  Google Scholar 

  18. Panning, M. & Romanowicz, B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 167, 361–379 (2006).

    Article  Google Scholar 

  19. Kustowski, B., Ekström, G. & Dziewoñski, A. Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. J. Geophys. Res. 113, B06306 (2008).

    Article  Google Scholar 

  20. Walker, A. M., Forte, A. M., Wookey, J., Nowacki, A. & Kendall, J. M. Elastic anisotropy of D′′ predicted from global models of mantle flow. Geochem. Geophys. Geosyst. 12, Q10006 (2011).

    Article  Google Scholar 

  21. Wenk, H. R., Cottaar, S., Tomé, C. N., McNamara, A. & Romanowicz, B. Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth Planet. Sci. Lett. 306, 33–45 (2011).

    Article  Google Scholar 

  22. Mainprice, D. A fortran program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput. Geosci. 16, 385–393 (1990).

    Article  Google Scholar 

  23. Wheeler, J. The preservation of seismic anisotropy in the Earth’s mantle during diffusion creep. Geophys. J. Int. 178, 1723–1732 (2009).

    Article  Google Scholar 

  24. Ammann, M. W., Brodholt, J. P., Wookey, J. & Dobson, D. P. First principles constraints on diffusion in lower mantle minerals and a weak D layer. Nature 465, 462–465 (2010).

    Article  Google Scholar 

Download references


This work was supported by a Natural Environment Research Council grant to D.P.D. (ref J009520) and a European Research Council starting grant to F.N. (ref 307312). A.W. was supported by ERC grant 240473.

Author information

Authors and Affiliations



High-pressure experiments D.P.D. and C.L.; XRD experiments F.N., M.A., N.C. and D.P.D.; TEM experiments N.M.; crystallographic interpretation I.G.W. and D.P.D.; seismic anisotropy simulations A.M.W.

Corresponding author

Correspondence to David P. Dobson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobson, D., Miyajima, N., Nestola, F. et al. Strong inheritance of texture between perovskite and post-perovskite in the D′′ layer. Nature Geosci 6, 575–578 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing