Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact bombardment of the terrestrial planets and the early history of the Solar System


During the first billion years of Solar System evolution, following planetary accretion, the rate of impact cratering was substantially higher than over the past 3.5 Gyr. However, the causes, magnitude and evolution of the early impact flux remain unknown. In particular, uncertainty persists about whether the largest impact basins on the Moon and the other terrestrial planets formed from a cataclysmic bombardment in a narrow window of time about 3.9 Gyr ago, as initially suggested by the lunar sample collection, or over a more extended period. Recent observations relating to this so-called Late Heavy Bombardment imply that the window of bombardment was not as narrow and intense as originally envisaged. Nevertheless, numerical simulations suggest that the rocky bodies left behind after planetary accretion are insufficient in number to form the youngest large impact basins 4.0 to 3.7 Gyr ago. One viable hypothesis for the formation of these basins is the delivery of impactors to the inner Solar System following the migration of the giant planets, but this scenario also faces challenges. Clarifying the magnitude and length of the Late Heavy Bombardment has implications across the full range of planetary geosciences, from understanding the dynamical evolution of the Solar System to surface conditions on the terrestrial planets early in their history.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lunar Orbiter Laser Altimeter topography of six lunar basins.
Figure 2: Impact flux during the period of heavy bombardment on the Moon at various points in time, assuming different ages for Orientale (O), Imbrium (I) and Nectaris (N) and specific values for their superposed crater densities15.
Figure 3: Rectangles showing the range of impact flux required on the Moon at various points in time, assuming different ages and superposed crater densities for Orientale (O), Imbrium (I) and Nectaris (N) and various maria3,13.


  1. 1

    Hartmann, W. K. Secular changes in meteoritic flux through the history of the Solar System. Icarus 4, 207–213 (1965).

    Article  Google Scholar 

  2. 2

    Stöffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner Solar System. Space Sci. Rev. 96, 9–54 (2001).

    Article  Google Scholar 

  3. 3

    Neukum, G., Ivanov, B. A. & Hartmann, W. K. Cratering records in the inner Solar System in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001).

    Article  Google Scholar 

  4. 4

    Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. A lunar cataclysm at 3.95 AE and the structure of the lunar crust. Lunar Planet. Sci. Conf. 4, 723–725 (1973).

    Google Scholar 

  5. 5

    Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974).

    Article  Google Scholar 

  6. 6

    Turner, G., Cadogan, P. H. & Yonge, C. J. Argon selenochronology. Proc. Lunar Sci. Conf. 4, 1889–1914 (1973).

    Google Scholar 

  7. 7

    Hartmann, W. K. Lunar 'cataclysm' – a misconception. Icarus 24, 181–187 (1975).

    Article  Google Scholar 

  8. 8

    Baldwin, R. B. Was there a “terminal lunar cataclysm” 3.9–40×109 years ago? Icarus 23, 157–166 (1974).

    Article  Google Scholar 

  9. 9

    Schaeffer, O. A. & Husain, L. Chronology of lunar basin formation. Proc. Lunar Sci. Conf. 5, 1541–1555 (1974).

    Google Scholar 

  10. 10

    Haskin, L. A., Korotev, R. L., Rockow, K. M. & Jolliff, B. L. The case for an Imbrium origin of the Apollo thorium rich impact-melt breccias. Meteor. Planet. Sci. 33, 959–975 (1998).

    Article  Google Scholar 

  11. 11

    Hartmann, W. K. Megaregolith evolution and cratering cataclysm models—lunar cataclysm as a misconception (28 years later). Meteor. Planet. Sci. 38, 579–593 (2003).

    Article  Google Scholar 

  12. 12

    Ryder, G. Lunar samples, lunar accretion and the early bombardment of the Moon. Eos 71, 313–323 (1990).

    Article  Google Scholar 

  13. 13

    Stöffler, D. et al. Cratering history and lunar chronology. Rev. Mineral Geochem. 60, 519–596 (2006).

    Article  Google Scholar 

  14. 14

    Wilhelms, D. E. The Geologic History of the Moon (USGS professional paper 1348, 1987).

    Book  Google Scholar 

  15. 15

    Fassett, C. I. et al. Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. J. Geophys. Res. 117, E00H06 (2012).

    Google Scholar 

  16. 16

    James, O. Petrologic and age relations of the Apollo 16 rocks - implications for subsurface geology and the age of the Nectaris Basin. Proc. Lunar Planet. Sci. 12B, 209–233 (1981).

    Google Scholar 

  17. 17

    Reimold, W. U. et al. Isotope Analysis of crystalline impact melt rocks from Apollo 16 station 11 and 13, North Ray Crater. J. Geophys Res. 90, C431–C448 (1985).

    Article  Google Scholar 

  18. 18

    Norman, M. D., Duncan, R. A. & Huard, J. J. Imbrium provenance for the Apollo 16 Descartes terrain: Argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim. Cosmochim. Acta 74, 763–783 (2010).

    Article  Google Scholar 

  19. 19

    Stuart-Alexander, D. E. & Howard, K. A. Lunar maria and circular basins: A review. Icarus 12, 440–456 (1970).

    Article  Google Scholar 

  20. 20

    Dalrymple, G. B. & Ryder, G. Ar40/Ar39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis Basin. J. Geophys. Res. 101, 26069–26084 (1996).

    Article  Google Scholar 

  21. 21

    Spudis, P. D., Wilhelms, D. E. & Robinson, M. S. The Sculptured Hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. J. Geophys. Res. 116, E00H03 (2011).

    Article  Google Scholar 

  22. 22

    Gnos, E. et al. Pinpointing the source of a lunar meteorite: Implications for the evolution of the Moon. Science 305, 657–659 (2004).

    Article  Google Scholar 

  23. 23

    Liu, D. et al. Comparative zircon U–Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth Planet. Sci. Lett. 319–320, 277–286 (2012).

    Article  Google Scholar 

  24. 24

    Cohen, B. A., Swindle, T. D. & Kring, D. A. Support for the lunar cataclysm hypotheses from lunar meteorite impact melt ages. Science 290, 1754–1756 (2000).

    Article  Google Scholar 

  25. 25

    Cohen, B. A., Swindle, T. D. & Kring, D. A. Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment history. Meteor. Planet. Sci. 40, 755–777 (2005).

    Article  Google Scholar 

  26. 26

    Chapman, C. R., Cohen, B. A. & Grinspoon, D. H. What are the real constraints on the existence and magnitude of the Late Heavy Bombardment? Icarus 189, 233–245 (2007).

    Article  Google Scholar 

  27. 27

    Bottke, W. F., Levison, H. F., Nesvorný, D. & Dones, L. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223 (2007).

    Article  Google Scholar 

  28. 28

    Fernández, J. A. & Ip, W. H. Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).

    Article  Google Scholar 

  29. 29

    Malhotra, R. The origin of Pluto's peculiar orbit. Nature 365, 819–821 (1993).

    Article  Google Scholar 

  30. 30

    Malhotra, R. The origin of Pluto's orbit: Implications for the Solar System beyond Neptune. Astron. J. 110, 420–429 (1995).

    Article  Google Scholar 

  31. 31

    Liou, J. C. & Malhotra, R. Depletion of the outer asteroid belt. Science 275, 375–377 (1997).

    Article  Google Scholar 

  32. 32

    Levison. et al. Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151, 286–306 (2001).

    Article  Google Scholar 

  33. 33

    Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    Article  Google Scholar 

  34. 34

    Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System, Nature 435, 459–461 (2005).

    Article  Google Scholar 

  35. 35

    Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter's Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).

    Article  Google Scholar 

  36. 36

    Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).

    Article  Google Scholar 

  37. 37

    Minton, D. A. & Malhotra, R. A record of planet migration in the main asteroid belt. Nature 457, 1109–1111 (2009).

    Article  Google Scholar 

  38. 38

    Strom, R. G., Malhotra, R., Ito, T., Yoshida, F. & Kring, D. A. The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850 (2005).

    Article  Google Scholar 

  39. 39

    Ćuk, M., Gladman, B. J. & Stewart, S. T. Constraints on the source of lunar cataclysm impactors. Icarus 207, 590–594 (2010).

    Article  Google Scholar 

  40. 40

    Marchi, S., Bottke, W. F., Kring, D. A. & Morbidelli, A. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325–326, 27–38 (2012).

    Article  Google Scholar 

  41. 41

    Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K. & Levison, H. F. Constructing the secular archictecure of the Solar System II; the terrestrial planets. Astron. Astrophys. 507, 1053–1065 (2009).

    Article  Google Scholar 

  42. 42

    Agnor, C. B. & Lin, D. N. C. On the migration of Jupiter and Saturn: Constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012).

    Article  Google Scholar 

  43. 43

    Morbidelli, A. Brasser, R., Gomes, R., Levison, H. F. & Tsiganis, K. Evidence from the asteroid belt for a violent past evolution of Jupiter's orbit. Astron. J. 140, 1391 (2010).

    Article  Google Scholar 

  44. 44

    Minton, D. A. & Malhotra, R. Secular resonance sweeping of the main asteroid belt during planet migration. Astrophys. J. 732, 53 (2011).

    Article  Google Scholar 

  45. 45

    Nesvorný, D. Young Solar System's fifth giant planet? Astrophys. J. 742, L22 (2011).

    Article  Google Scholar 

  46. 46

    Batygin, K., Brown, M. E. & Betts, H. Instability-driven dynamical evolution model of a primordially five-planet outer Solar System. Astrophys. J. 744, L3 (2012).

    Article  Google Scholar 

  47. 47

    Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System's instability with four, five, and six giant planets. Astrophys. J. 144, 117–136 (2012).

    Google Scholar 

  48. 48

    Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).

    Article  Google Scholar 

  49. 49

    Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012).

    Article  Google Scholar 

  50. 50

    Johnson, B. C. & Melosh, H. J. Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485, 75–77 (2012).

    Article  Google Scholar 

Download references


Reviews by W. K. Hartmann and A. Morbidelli improved the manuscript. We also acknowledge discussions with B. A. Cohen and J. W. Head III.

Author information



Corresponding author

Correspondence to Caleb I. Fassett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fassett, C., Minton, D. Impact bombardment of the terrestrial planets and the early history of the Solar System. Nature Geosci 6, 520–524 (2013).

Download citation

Further reading


Quick links