Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anthropogenic perturbation of the carbon fluxes from land to ocean

Abstract

A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr−1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (0.4 Pg C yr−1) or sequestered in sediments (0.5 Pg C yr−1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of 0.1 Pg C yr−1 to the open ocean. According to our analysis, terrestrial ecosystems store 0.9 Pg C yr−1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr−1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global carbon budget and its anthropogenic perturbation.
Figure 2: Density of pCO2 data for the continuum of land–ocean aquatic systems.
Figure 3: Global budget of anthropogenic CO2.

Similar content being viewed by others

References

  1. Likens, G. E., Mackenzie, F. T., Richey, J. E., Sedwell, J. R. & Turekian, K. K. Flux of Organic Carbon from the Major Rivers of the World to the Oceans (National Technical Information Service, US Department of Commerce, 1981).

    Google Scholar 

  2. Mulholland, P. J. & Elwood, J. W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34, 490–499 (1982).

    Google Scholar 

  3. Wollast, R. & Mackenzie, F. T. in Climate and Geo-sciences Vol. 285 (eds Berger, A., Schneider, S. & Duplessy, J. Cl.) 453–473 (Academic Publishers, 1989).

    Book  Google Scholar 

  4. Degens, E. T., Kempe, S. & Richey, J. E. Biogeochemistry of Major World Rivers.(Wiley, 1991).

    Google Scholar 

  5. Smith, S. V. & Hollibaugh, J. T. Coastal metabolism and the oceanic organic carbon balance. Rev. Geophys. 31, 75–89 (1993).

    Article  Google Scholar 

  6. Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    Article  Google Scholar 

  7. Ver, L. M. B., Mackenzie, F. T. & Lerman, A. Biogeochemical responses of the carbon cycle to natural and human perturbations: past, present, and future. Am. J. Sci. 299, 762–801 (1999).

    Article  Google Scholar 

  8. Richey, J. E. in The Global Carbon Cycle, Integrating Humans, Climate, and the Natural World Vol. 17 (eds Field, C. B. & Raupach, M. R.) 329–340 (Island Press, 2004).

    Google Scholar 

  9. Raymond, P. A., Oh, N. H., Turner, R. E. & Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451, 449–452 (2008).

    Article  Google Scholar 

  10. Aumont, O. et al. Riverine-driven interhemispheric transport of carbon. Glob. Biogeochem. Cycles 15, 393–405 (2001).

    Article  Google Scholar 

  11. Global nutrient exports from watersheds. Glob. Biogeochem. Cycles 19 (special issue), no. 4 (2005).

  12. Mackenzie, F. T., Andersson, A. J., Lerman, A. & Ver, L. M. in The Sea Vol. 13 (eds Robinson, A. R. & Brink, K. H.) 193–225 (Harvard Univ. Press, 2005).

    Google Scholar 

  13. Cotrim da Cunha, L., Buitenhuis, E. T., Le Quéré, C., Giraud, X. & Ludwig, W. Potential impact of changes in river nutrient supply on global ocean biogeochemistry. Glob. Biogeochem. Cycles 21, GB4007 (2007).

    Article  Google Scholar 

  14. Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci. 3, 311–314 (2010).

    Article  Google Scholar 

  15. Sarmiento, J. L. & Sundquist, E. T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992).

    Article  Google Scholar 

  16. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).

    Article  Google Scholar 

  17. Battin, T. J. et al. The boundless carbon cycle. Nature Geosci. 2, 598–600 (2009).

    Article  Google Scholar 

  18. McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  19. Sarmiento, J. L. & Gruber, N. Sinks for anthropogenic carbon. Phys. Today 55, 30–36 (August 2002).

    Article  Google Scholar 

  20. Denman, K. L. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 499–588 (Cambridge Univ. Press, 2007).

    Google Scholar 

  21. Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Article  Google Scholar 

  22. Peters, G. P. et al. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Clim. Change 2, 2–4 (2012).

    Article  Google Scholar 

  23. Global Carbon Project. Carbon Budget and Trends 2012 www.globalcarbonproject.org/carbonbudget (2012).

  24. Ludwig, W. & Probst, J. L. River sediment discharge to the oceans: present-day controls and global budgets. Am. J. Sci. 298, 265–295 (1998).

    Article  Google Scholar 

  25. Archer, D. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res.-Oceans 110, 1–6 (2005).

    Article  Google Scholar 

  26. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article  Google Scholar 

  27. Laruelle, G. G., Dürr, H. H., Slomp, C. P. & Borges, A. V. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys. Res. Lett. 37, L15607 (2010).

    Article  Google Scholar 

  28. Collins, W. J. et al. Development and evaluation of an Earth-system model — HadGEM2. Geosci. Model Dev. Discuss. 4, 997–1062 (2011).

    Article  Google Scholar 

  29. Ciais, P. et al. Geo Carbon Strategy (Geo Secretariat Geneva/Food and Agriculture Organization, 2010).

    Google Scholar 

  30. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

    Article  Google Scholar 

  31. Ittekkot, V., Humborg, C., Rahm, L. & Nguyen, T. A. in Interactions of the Major Biogeochemical Cycles: Global Change and Human Impacts Vol. 357 (eds Melillo, J. M., Field, C. B. & Moldan, B.) Ch. 17, 311–322 (Island Press, 2004).

    Google Scholar 

  32. Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).

    Article  Google Scholar 

  33. Garrels, R. M. & MacKenzie, F. T. Evolution of Sedimentary Rocks (Norton, 1971).

    Google Scholar 

  34. Holland, H. D. The chemistry of the atmosphere and oceans (Wiley, 1978).

    Google Scholar 

  35. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  Google Scholar 

  36. Munhoven, G. Glacial–interglacial changes of continental weathering: estimates of the related CO2 and HCO3-flux variations and their uncertainties. Glob. Planet. Change 33, 155–176 (2002).

    Article  Google Scholar 

  37. Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S. & Köhler, P. Global CO2 consumption by chemical weathering: What is the contribution of highly active weathering regions? Glob. Planet. Change 69, 185–194 (2009).

    Article  Google Scholar 

  38. Mackenzie, F. T. & Lerman, A. Carbon in the Geobiosphere — Earth's Outer Shell (Springer, 2006).

    Google Scholar 

  39. Kempe, S. in Transport of Carbon and Minerals in Major World Rivers Part 1 (ed. Degens, E. T.) 91–332 (Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband, 1982).

    Google Scholar 

  40. Prairie, Y. T. & Duarte, C. M. Direct and indirect metabolic CO2 release by humanity. Biogeosciences 4, 215–217 (2007).

    Article  Google Scholar 

  41. Mackenzie, F. T., Lerman, A. & Ver, L. M. in Geological Perspectives of Global Climate Change. AAPG Studies in Geology Vol. 47 (eds Gerhard, L. C., Harrison, W. E. & Hanson, B. M.) 51–82 (American Association of Petroleum Geologists, 2001).

    Google Scholar 

  42. Cole, J. J., Caraco, N. F., Kling, G. W. & Kratz, T. K. Carbon dioxide supersaturation in the surface waters of lakes. Science 265, 1568–1570 (1994).

    Article  Google Scholar 

  43. Downing, J. A. et al. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob. Biogeochem. Cycles 22, GB1018 (2008).

    Article  Google Scholar 

  44. Raymond, P. A. & Bauer, J. E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org. Geochem. 32, 469–485 (2001).

    Article  Google Scholar 

  45. Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011).

    Article  Google Scholar 

  46. Stets, E. G., Striegl, R. G., Aiken, G. R., Rosenberry, D. O. & Winter, T. C. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J. Geophys. Res.-Biogeosciences 114, G1 (2009).

    Article  Google Scholar 

  47. Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).

    Article  Google Scholar 

  48. Copard, Y., Amiotte-Suchet, P. & Di-Giovanni, C. Storage and release of fossil organic carbon related to weathering of sedimentary rocks. Earth Planet. Sci. Lett. 258, 345–357 (2007).

    Article  Google Scholar 

  49. Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article  Google Scholar 

  50. Sobek, S., Tranvik, L. J. & Cole, J. J. Temperature independence of carbon dioxide supersaturation in global lakes. Glob. Biogeochem. Cycles 19, 1–10 (2005).

    Article  Google Scholar 

  51. Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geosci. 4, 839–842 (2011).

    Article  Google Scholar 

  52. Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P. & Cole, J. J. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52, 1208–1219 (2007).

    Article  Google Scholar 

  53. Humborg, C. et al. CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob. Change Biol. 16, 1966–1978 (2010).

    Article  Google Scholar 

  54. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 . Nature 416, 617–620 (2002).

    Article  Google Scholar 

  55. Melack, J. M., Novo, E. M. L. M., Forsberg, B. R., Piedade, M. T. F. & Maurice, L. in Amazonia and Global Change (eds Keller, M., Bustamante, M., Gash, J. & Silva Dias, P.) 525–541 (Geophysical Monograph Series Vol. 186, AGU, 2009).

    Book  Google Scholar 

  56. Smith, S. V., Renwick, W. H., Buddemeier, R. W. & Crossland, C. J. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 15, 697–707 (2001).

    Article  Google Scholar 

  57. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  58. Meybeck, M. in Interactions of C, N, P and S: Biogeochemical Cycles (eds Wollast, R., Mackenzie, F. T. & Chou, L.) 163–193 (Springer Verlag, 1991).

    Google Scholar 

  59. Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W. & Harrison, J. Estimation of global river transport of sediments and associated particulate C, N, and P. Glob. Biogeochem. Cycles 19, GB4S05 (2005).

    Article  Google Scholar 

  60. Schlesinger, W. H. & Melack, J. M. Transport of organic carbon in the world's rivers. Tellus 33, 172–187 (1981).

    Article  Google Scholar 

  61. Degens, E. T. in Transport of Carbon and Minerals in Major World Rivers, Part 1S Vol. 52 (ed. Degens, E. T.) 1–12 (Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband, 1982).

    Google Scholar 

  62. Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2012).

    Article  Google Scholar 

  63. Cai, W. J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Ann. Rev. Mar. Sci. 3, 123–145 (2011).

    Article  Google Scholar 

  64. Borges, A. V. & Abril, G. in Treatise on Estuarine and Coastal Science Vol. 5 (eds Wolanski, E. & McLusky, D. S.) 119–161 (Academic Press, 2012).

    Google Scholar 

  65. Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    Article  Google Scholar 

  66. Breithaupt, J. L., Smoak, J. M., Smith, T. J., Sanders, C. J. & Hoare, A. Organic carbon burial rates in mangrove sediments: strengthening the global budget. Glob. Biogeochem. Cycles 26, GB3011 (2012).

    Article  Google Scholar 

  67. Cai, W. J., Dai, M. & Wang, Y. Air–sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys. Res. Lett. 33, L12603 (2006).

    Article  Google Scholar 

  68. Borges, A. V., Delille, B. & Frankignoulle, M. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystem counts. Geophys. Res. Lett. 32, 1–4 (2005).

    Article  Google Scholar 

  69. Wanninkhof, R. et al. Global ocean carbon uptake: magnitude, variability and trends. Biogeosci. Discuss. 9, 10961–11012 (2012).

    Article  Google Scholar 

  70. Liu, K. K., Atkinson, L., Quiñones, R. & Talaue-McManus, L. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis (Springer, 2010).

    Book  Google Scholar 

  71. Muller-Karger, F. E. et al. The importance of continental margins in the global carbon cycle. Geophys. Res. Lett. 32, L01602 (2005).

    Article  Google Scholar 

  72. Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P. & Regnier, P. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences 10, 371–398 (2013).

    Article  Google Scholar 

  73. Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).

    Article  Google Scholar 

  74. Andersson, A. J., MacKenzie, F. T. & Lerman, A. Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. Am. J. Sci. 305, 875–918 (2005).

    Article  Google Scholar 

  75. Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Ann. Rev. Mar. Sci. 4, 401–423 (2012).

    Article  Google Scholar 

  76. Mackenzie, F. T., De Carlo, E. H. & Lerman, A. in Treatise on Estuarine and Coastal Science (eds Middelburg, J. J. & Laane, R.) Ch. 5.10 (Elsevier, 2012).

    Google Scholar 

  77. Jahnke, R. in Carbon and Nutrient Fluxes in Continental Margins, Global Change — The IGBP Series Vol. 3 (eds Liu, K-K. et al.) 597–615 (Verlag, 2010).

    Book  Google Scholar 

  78. Milliman, J. & Meade, R. World-wide delivery of river sediment to the oceans. J. Geol. 91, 1–21 (1983).

    Article  Google Scholar 

  79. Van Oost, K. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629 (2007).

    Article  Google Scholar 

  80. Billings, S. A., Buddemeier, R. W., Richter, D. deB., Van Oost, K. & Bohling, G. A simple method for estimating the influence of eroding soil profiles on atmospheric CO2 . Glob. Biogeochem. Cycles 24, GB2001 (2010).

    Article  Google Scholar 

  81. Mackenzie, F. T., Ver, L. M. & Lerman, A. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 190, 13–32 (2002).

    Article  Google Scholar 

  82. Gislason, S. R. et al. Direct evidence of the feedback between climate and weathering. Earth Planet. Sci. Lett. 277, 213–222 (2009).

    Article  Google Scholar 

  83. Beaulieu, E., Goddëris, Y., Donnadieu, Y., Labat, D. & Roelandt, C. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Clim. Change 2, 346–349 (2012).

    Article  Google Scholar 

  84. Bayon, G. et al. Intensifying weathering and land use in iron age Central Africa. Science 335, 1219–1222 (2012).

    Article  Google Scholar 

  85. Oh, N. H. & Raymond, P. A. Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin. Glob. Biogeochem. Cycles 20, GB3012 (2006).

    Article  Google Scholar 

  86. Hamilton, S. K., Kurzman, A. L., Arango, C., Jin, L. & Robertson, G. P. Evidence for carbon sequestration by agricultural liming. Glob. Biogeochem. Cycles 21, GB2021 (2007).

    Article  Google Scholar 

  87. Lerman, A., Mackenzie, F. T. & Ver, L. M. Coupling of the perturbed C-N-P cycles in industrial time. Aquat. Geochem. 10, 3–32 (2004).

    Article  Google Scholar 

  88. Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W. & Bouwman, A. F. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob. Biogeochem. Cycles 19, GB4S01 (2005).

    Article  Google Scholar 

  89. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  Google Scholar 

  90. Jin, X., Gruber, N., Frenzel, H., Doney, S. C. & McWilliams, J. C. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump. Biogeosciences 5, 385–406 (2008).

    Article  Google Scholar 

  91. Guenet, B., Danger, M., Abbadie, L. & Lacroix, G. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91, 2850–2861 (2010).

    Article  Google Scholar 

  92. Pan, Y. et al. A large and persistent carbon sink in the world's forests. Science 333, 988–993 (2011).

    Article  Google Scholar 

  93. Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Glob. Biogeochem. Cycles 21, GB1020 (2007).

    Google Scholar 

  94. Khatiwala, S. et al. Global ocean storage of anthropogenic carbon. Biogeosci. Discuss. 9, 8931–8988 (2012).

    Article  Google Scholar 

  95. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010).

    Article  Google Scholar 

  96. Sarmiento, J. L. et al. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7, 2351–2367 (2010).

    Article  Google Scholar 

  97. Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    Article  Google Scholar 

  98. Tans, P. P., Fung, I. Y. & Enting, I. G. in Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? (eds Woodwell, G. M. & Mackenzie, F. T.) 351–366 (Oxford Univ. Press, 1995).

    Google Scholar 

  99. King, A. W. et al. The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle (US Climate Change Science Program, 2007).

    Google Scholar 

  100. Meybeck, M., Dürr, H. H. & Vörösmarty, C. J. Global coastal segmentation and its river catchment contributors: a new look at land–ocean linkage. Glob. Biogeochem. Cycles 20, GB1S90 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is the outcome of the workshop 'Exploring knowledge gaps along the global carbon route: a hitchhiker's guide for a boundless cycle' held in Eprave, Belgium, in November 2011. The authors would like to thank S. Bonneville, L. Chou, P. Cox, H. Durr, T. Eglinton, K. Fleischer, J. Kaplan, T. Kleinen, D. Dan Li, A. Mouchet, H. Nick, C. Pallud, C. Prentice, D. Schimel, M. Serrano, J-L. Tison, P. Van Cappellen, C. Volta and J. Zhou for their input during the workshop. The workshop was officially endorsed by the Global Carbon Project (GCP) and by the Analysis, Integration and Modeling of the Earth System (AIMES) of the International Geosphere-Biosphere Programme (IGBP) and received financial support from the government of the Brussels-Capital region (Innoviris — Brains Back to Brussels award to P.R.), the Walloon Agency for Air and Climate (AWAC), the Fonds National de la Recherche Scientifique of Belgium (FNRS), The Belgian Federal Science Policy Office (BELSPO), the Université Libre de Bruxelles (Belgium), the Netherlands Organization for Scientific Research (NWO), the King Abdullah University of Science and Technology (KAUST) Center-in-Development Award to Utrecht University (The Netherlands), the University of Waterloo (Canada) and the University of Exeter (UK). The research leading to these results received funding from the European Union's Seventh Framework Program (FP7/2007–2013) under grant agreement number 283080, project GEOCARBON.

Author information

Authors and Affiliations

Authors

Contributions

P.R. and P.F. initiated the Eprave workshop that led to this paper. P.R. coordinated and participated at all stages of the conception and writing of the paper. P.F., P.C., F.T.M. and N.G. were central to the conception of the paper and to the writing of the manuscript. I.A.J. proposed the overall design of Fig. 3. G.G.L. and R.L. produced Fig. 2, using the GloRiCh database for inland waters assembled by J. Hartmann and co-workers. S.L. took a leading role in the quantification of the terrestrial ecosystem budget. All other authors contributed to specific aspects of the budget analysis and commented on various versions of the manuscript. F.T.M. was instrumental to the genesis of this paper through his pioneering work in the field.

Corresponding author

Correspondence to Pierre Regnier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Note and Supplementary Table (PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regnier, P., Friedlingstein, P., Ciais, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geosci 6, 597–607 (2013). https://doi.org/10.1038/ngeo1830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1830

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology