Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean

Abstract

Submarine groundwater discharge is defined as any flow of water at continental margins from the seabed to the coastal ocean, regardless of fluid composition or driving force1. The flux of submarine groundwater discharge has been hypothesized to be a pathway for enriching coastal waters in nutrients, carbon and metals2. Here, we estimate the submarine groundwater flux from the inventory of 228Ra in the upper Atlantic Ocean, obtained by interpolating measurements at over 150 stations. Only 46% of the loss in 228Ra from radioactive decay is replenished by input from dust, rivers and coastal sediments. We infer that the remainder must come from submarine groundwater discharge. Using estimates of 228Ra concentrations in submarine groundwater discharge, we arrive at a total flux from submarine groundwater discharge of 2–4×1013 m3 yr−1, between 80 and 160% of the amount of freshwater entering the Atlantic Ocean from rivers. Submarine groundwater discharge is not a freshwater flux, but a flux of terrestrial and sea water that has penetrated permeable coastal sediments. Our assessment of the volume of submarine groundwater discharge confirms that this flux represents an important vehicle for the delivery of nutrients, carbon and metal to the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inventory of 228Ra (×1010 atoms m−2) in the upper 1,000 m of the Atlantic Ocean.
Figure 2: Distribution of 228Ra in groundwater samples from throughout the Atlantic coastline.

Similar content being viewed by others

References

  1. Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S. & Taniguchi, M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66, 3–33 (2003).

    Article  Google Scholar 

  2. Moore, W. S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380, 612–614 (1996).

    Article  Google Scholar 

  3. Sarmiento, J. L., Rooth, C. G. H. & Broecker, W. S. Radium-228 as a tracer of basin wide processes in the abyssal ocean. J. Geophys. Res. 87, 9694–9698 (1982).

    Article  Google Scholar 

  4. Key, R. M., Moore, W. S. & Sarmiento, J. L. Transient tracers in the ocean north Atlantic study final data report for 228Ra and 226Ra. Technical Report #92-2 (Ocean Tracer Laboratory, Dept. Geology and Geophysics, Princeton Univ., Princeton, 1992).

  5. Key, R. M., Moore, W. S. & Sarmiento, J. L. Transient tracers in the ocean tropical Atlantic study final data report for 228Ra and 226Ra. Technical Report #92-3 (Ocean Tracer Laboratory, Dept. Geology and Geophysics, Princeton Univ., Princeton, 1992).

  6. Key, R. M., Rotter, R. J., McDonald, G. J. & Slater, R. D. Western boundary exchange experiment final data report for large volume samples 228Ra, 226Ra, 9Be, and 10Be Results. Technical Report #90-1 (Ocean Tracer Laboratory, Dept. Geology and Geophysics, Princeton Univ., Princeton, 1990).

  7. Moore, W. S. & Dymond, J. Fluxes of Ra-226 and barium in the Pacific Ocean: The importance of boundary processes. Earth. Planet. Sci. Lett. 107, 55–68 (1991).

    Article  Google Scholar 

  8. Key, R. M., Stallard, R. F., Moore, W. S. & Sarmiento, J. L. Distribution and flux of Ra-226 in the Amazon River estuary. J. Geophys. Res. 90, 6995–7004 (1985).

    Article  Google Scholar 

  9. Moore, W. S., Astwood, H. & Lindstrom, C. Radium isotopes in coastal waters on the Amazon shelf. Geochim. Cosmochim. Acta 59, 4285–4298 (1995).

    Article  Google Scholar 

  10. Moore, W. S. & Todd, J. F. Radium isotopes in the Orinoco estuary and Eastern Caribbean Sea. J. Geophys. Res. 98, 2233–2244 (1993).

    Article  Google Scholar 

  11. Krest, J. M., Moore, W. S. & Rama. 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: Indicators of groundwater input. Mar. Chem. 64, 129–152 (1999).

    Article  Google Scholar 

  12. Moore, W. S. & Shaw, T. J. Fluxes and behavior of radium isotopes, barium, and uranium in seven Southeastern US rivers and estuaries. Mar. Chem. 108, 236–254 (2008).

    Article  Google Scholar 

  13. Milliman, J. D. & Meade, R. H. World-wide delivery of river sediment to the oceans. J. Geol. 91, 1–21 (1983).

    Article  Google Scholar 

  14. Fan, S.-M., Moxim, W. J. & Levy, H. II. Aeolian input of bioavailable iron to the ocean. Geophys. Res. Lett. 33, L07602 (2006).

    Google Scholar 

  15. Colbert, S. L. Ra Isotopes in San Pedro Bay, CA: Constraint on Inputs and Use of Nearshore Distribution to Compute Horizontal Eddy Diffusion Rates. Ph.D. Dissertation, Univ. Southern California, Los Angeles (2004).

  16. Hancock, G. J., Webster, I. T. & Stieglitz, T. C. Horizontal mixing of Great Barrier Reef waters: Offshore diffusivity determined from radium isotope distribution. J. Geophys. Res. 111, C12019 (2006).

    Article  Google Scholar 

  17. Hammond, D. E., Marton, R. A., Berelson, W. M. & Ku, T.-H. Radium 228 distribution and mixing in San Nicolas and San Pedro Basins, Southern California borderland. J. Geophys. Res. 95, 3321–3335 (1990).

    Article  Google Scholar 

  18. Emery, K. O. Relict sediments on continental shelves of the world. Bull. Am. Assoc. Petrol. Geol. 52, 445–464 (1968).

    Google Scholar 

  19. Emery, K. O. & Uchupi, E. The Geology of the Atlantic Ocean (Springer, New York, 1984).

    Book  Google Scholar 

  20. Moore, W. S. & Wilson, A. M. Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge. Earth Planet. Sci. Lett. 235, 564–576 (2005).

    Article  Google Scholar 

  21. Windom, H. L., Niencheski, L. F., Moore, W. S. & Jahnke, R. Submarine groundwater discharge: A large, previously unrecognized source of dissolved iron to the south Atlantic ocean. Mar. Chem. 102, 252–266 (2006).

    Article  Google Scholar 

  22. Moore, W. S. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 65, 111–126 (1999).

    Article  Google Scholar 

  23. Krest, J. M., Moore, W. S., Gardner, L. R. & Morris, J. T. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Glob. Biogeochem. Cycles 14, 167–176 (2000).

    Article  Google Scholar 

  24. Moore, W. S. et al. Thermal evidence of water exchange through a coastal aquifer: Implications for nutrient fluxes. Geophys. Res. Lett. 29doi:10.1029/2002GL014923 (2002).

  25. Burnett, W. C. et al. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Cont. Shelf Res. 27, 176–190 (2007).

    Article  Google Scholar 

  26. Paerl, H. W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as ‘new’ nitrogen and other nutrient sources. Limnol. Oceanogr. 42, 1154–1167 (1997).

    Article  Google Scholar 

  27. Hu, C., Muller-Karger, F. & Swarzenski, P. W. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys. Res. Lett. 33, L11601 (2006).

    Article  Google Scholar 

  28. Lee, Y.-W. & Kim, G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuar. Coast. Shelf Sci. 71, 309–317 (2007).

    Article  Google Scholar 

  29. Cai, W.-J., Wang, Y., Krest, J. & Moore, W. S. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim. Cosmochim. Acta 67, 631–639 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many scientists who have contributed published and unpublished groundwater radium data to this project. This research was supported by NSF.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Willard S. Moore.

Supplementary information

Supplementary Information

Supplementary tables S1-S3 (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, W., Sarmiento, J. & Key, R. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nature Geosci 1, 309–311 (2008). https://doi.org/10.1038/ngeo183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing