Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone


Radiative forcing from anthropogenic ozone in the troposphere is an important factor in climate change1, with an average value of 0.35 W m−2 according to the Intergovernmental Panel for Climate Change1 (IPCC). IPCC model results range from 0.25 to 0.65 W m−2, owing to uncertainties in the estimates of pre-industrial concentrations of tropospheric ozone1,2,3, and in the present spatial and temporal distributions of tropospheric ozone4,5,6,7,8, which are much more variable than those of longer-lived greenhouse gases such as carbon dioxide. Here, we analyse spectrally resolved measurements of infrared radiance from the Tropospheric Emission Spectrometer9 on board the NASA Aura satellite, as well as corresponding estimates of atmospheric ozone and water vapour, to obtain the reduction in clear-sky outgoing long-wave radiation due to ozone in the upper troposphere over the oceans. Accounting for sea surface temperature, we calculate an average reduction in clear-sky outgoing long-wave radiation for the year 2006 of 0.48±0.14 W m−2 between 45 S and 45 N. This estimate of the clear-sky greenhouse effect from tropospheric ozone provides a critical observational constraint for ozone radiative forcing used in climate model predictions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: TES ensemble sensitivities of TOA infrared flux to upper tropospheric ozone.
Figure 2: Annual average OLRc reduction from upper tropospheric ozone in W m−2.
Figure 3: Annual average flux reduction in 9.6 μm ozone band from tropospheric water vapour.


  1. Forster, P. et al. in The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Soloman, S. et al.) (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  2. Gauss, M. et al. Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos. Chem. Phys. 6, 575–599 (2006).

    Article  Google Scholar 

  3. Mickley, L. J., Jacob, D. J. & Rind, D. Uncertainty in preindustrial abundance of tropospheric ozone: Implications for radiative forcing calculations. J. Geophys. Res. Atmos. 106, 3389–3399 (2001).

    Article  Google Scholar 

  4. Gauss, M. et al. Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J. Geophys. Res. Atmos. 108, 4292–4313 (2003).

    Article  Google Scholar 

  5. Kiehl, J. T. et al. Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res. Atmos. 104, 31239–31254 (1999).

    Article  Google Scholar 

  6. Naik, N. et al. Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors. J. Geophys. Res. Atmos. 110, D24306 (2005).

    Article  Google Scholar 

  7. Portmann, R. W. et al. Radiative forcing of the Earth’s climate system due to tropical tropospheric ozone production. J. Geophys. Res. Atmos. 102, 9409–9417 (1997).

    Article  Google Scholar 

  8. Stevenson, D. S. et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. Atmos. 111, D08301 (2006).

    Article  Google Scholar 

  9. Beer, R. TES on the Aura mission: Scientific objectives, measurements, and analysis overview. IEEE Trans. Geosci. Remote Sens. 44, 1102–1105 (2006).

    Article  Google Scholar 

  10. Schoeberl, M. R. et al. Overview of the EOS Aura mission. IEEE Trans. Geosci. Remote Sens. 44, 1066–1074 (2006).

    Article  Google Scholar 

  11. Clough, S. A. et al. Forward model and Jacobians for tropospheric emission spectrometer retrievals. IEEE Trans. Geosci. Remote Sens. 44, 1308–1323 (2006).

    Article  Google Scholar 

  12. Clough, S. A. & Iacono, M. J. Line-by-line calculation of atmospheric fluxes and cooling rates 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res. Atmos. 100, 16519–16535 (1995).

    Article  Google Scholar 

  13. Bowman, K. W. et al. Tropospheric emission spectrometer: Retrieval method and error analysis. IEEE Trans. Geosci. Remote Sens. 44, 1297–1307 (2006).

    Article  Google Scholar 

  14. Kulawik, S. S. et al. Implementation of cloud retrievals for Tropospheric Emission Spectrometer (TES) atmospheric retrievals: Part 1. J. Geophys. Res. Atmos. 111, D24204 (2006).

    Article  Google Scholar 

  15. Worden, H. M. et al. TES level 1 algorithms: Interferogram processing, geolocation, radiometric, and spectral calibration. IEEE Trans. Geosci. Remote Sens. 44, 1288–1296 (2006).

    Article  Google Scholar 

  16. Worden, J. et al. Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection. J. Geophys. Res. Atmos. 109, D09308 (2004).

    Article  Google Scholar 

  17. Shephard, M. W. et al. Tropospheric emission spectrometer spectral radiance comparisons. J. Geophys. Res. Atmos. (in the press).

  18. Tobin, D. C. et al. Radiometric and spectral validation of atmospheric infrared sounder observations with the aircraft-based scanning high-resolution interferometer sounder. J. Geophys. Res. Atmos. 111, D09S02 (2006).

    Google Scholar 

  19. Nassar, R. et al. Validation of tropospheric emission spectrometer (TES) nadir ozone profiles using ozonesonde measurements. J. Geophys. Res. Atmos. (in the press).

  20. Jourdain, L. et al. Tropospheric vertical distribution of tropical Atlantic ozone observed by TES during the northern African biomass burning season. Geophys. Res. Lett. 34, L04810 (2007).

    Article  Google Scholar 

  21. Huang, X. L., Ramaswamy, V. & Schwarzkopf, M. D. Quantification of the source of errors in AM2 simulated tropical clear-sky outgoing longwave radiation. J. Geophys. Res. Atmos. 111, D14107 (2006).

    Article  Google Scholar 

  22. Harries, J. E., Brindley, H. E., Sagoo, P. J. & Bantges, R. J. Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature 410, 355–357 (2001).

    Article  Google Scholar 

  23. Haskins, R. D., Goody, R. D. & Chen, L. A statistical method for testing a general circulation model with spectrally resolved radiances. J. Geophys. Res. Atmos. 102, 16563–16581 (1997).

    Article  Google Scholar 

  24. Huang, X. L. & Yung, Y. L. Spatial and spectral variability of the outgoing thermal IR spectra from AIRS: A case study of July 2003. J. Geophys. Res. Atmos. 110, D12102 (2005).

    Article  Google Scholar 

  25. Loeb, N. G. et al. Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra Satellite. Part I: Methodology. J. Atmos. Oceanic Technol. 22, 338–351 (2005).

    Article  Google Scholar 

  26. Oltmans, S. J. et al. Tropospheric ozone over the North Pacific from ozonesonde observations. J. Geophys. Res. Atmos. 109, D15S01 (2004).

    Article  Google Scholar 

  27. Fishman, J., Watson, C. E., Larsen, J. C. & Logan, J. A. Distribution of tropospheric ozone determined from satellite data. J. Geophys. Res. 95, 3599–3617 (1990).

    Article  Google Scholar 

  28. Raval, A. & Ramanathan, V. Observational determination of the greenhouse effect. Nature 342, 758–761 (1989).

    Article  Google Scholar 

  29. Valero, F. P. J., Collins, W. D., Pilewskie, P., Bucholtz, A. & Flatau, P. J. Direct radiometric observations of the water vapor greenhouse effect over the equatorial Pacific ocean. Science 275, 1773–1776 (1997).

    Article  Google Scholar 

  30. Sitch, S., Cox, P. M., Collins, W. J. & Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007).

    Article  Google Scholar 

Download references


The authors wish to thank the TES project and science teams, who have made this analysis possible. We also thank D. Waliser at JPL, L. Mickley at the Harvard School of Engineering and Applied Sciences, and J.-F. Lamarque at NCAR for useful discussions. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations



H.M.W. drafted the manuscript, prepared the figures and developed the methods for estimating OLRc sensitivity. K.W.B. drafted sections for the manuscript and methods, and provided tools and interpretation for the principal component analysis. J.R.W. provided error estimates and analysis tools. A.E. provided analysis tools and interpretation. R.B. developed the TES experiment and instrument. R.B. and A.E. are responsible for project planning. All authors contributed to discussions of the results and preparation of the manuscript.

Corresponding authors

Correspondence to Helen M. Worden or Kevin W. Bowman.

Supplementary information

Supplementary Information

Supplementary figures S1-S8 (PDF 16814 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Worden, H., Bowman, K., Worden, J. et al. Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone. Nature Geosci 1, 305–308 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing