Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Projectile remnants in central peaks of lunar impact craters



The projectiles responsible for the formation of large impact craters are often assumed to melt or vaporize during the impact, so that only geochemical traces1,2 or small fragments3,4 remain in the final crater. In high-speed oblique impacts, some projectile material may survive5,6,7, but this material is scattered far down-range from the impact site. Unusual minerals, such as magnesium-rich spinel8,9 and olivine10,11, observed in the central peaks of many lunar craters are therefore attributed to the excavation of layers below the lunar surface. Yet these minerals are abundant in many asteroids, meteorites and chondrules12,13,14,15. Here we use a numerical model to simulate the formation of impact craters and to trace the fate of the projectile material. We find that for vertical impact velocities below about 12 km s−1, the projectile may both survive the impact and be swept back into the central peak of the final crater as it collapses, although it would be fragmented and strongly deformed. We conclude that some unusual minerals observed in the central peaks of many lunar impact craters could be exogenic in origin and may not be indigenous to the Moon.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of Copernicus crater by a low-speed impact.
Figure 2: Formation of Copernicus crater by a high-speed projectile.
Figure 3: Impact velocity distribution on the Moon.


  1. Evans, N. J., Gregoire, D. C., Grieve, R. A. F., Goodfellow, W. D. & Veizer, J. Use of platinum-group elements for impactor identification: Terrestrial impact craters and Cretaceous–Tertiary boundary. Geochim. Cosmochim. Acta 57, 3737–3748 (1993).

    Article  Google Scholar 

  2. Tagle, R. & Hecht, L. Geochemical identification of projectiles in impact rocks. Meteorit. Planet Sci. 41, 1721–1735 (2006).

    Article  Google Scholar 

  3. Maier, W. D. et al. Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441, 203–206 (2006).

    Article  Google Scholar 

  4. Kyte, F. T. A meteorite from the Cretaceous/Tertiary boundary. Nature 396, 237–239 (1998).

    Article  Google Scholar 

  5. Pierazzo, E. & Chyba, C. F. Amino acid survival in large cometary impacts. Meteorit. Planet Sci. 34, 909–918 (1999).

    Article  Google Scholar 

  6. Pierazzo, E. & Melosh, H. J. Hydrocode modeling of oblique impacts: The fate of the projectile. Meteorit. Planet Sci. 35, 117–130 (2000).

    Article  Google Scholar 

  7. Bland, P. A. et al. Asteroids on the Moon: Projectile survival during low velocity impact LPSC Conference, XXXIX: Abs. #2045 (2008).

  8. Gross, J. & Treiman, A. H. Unique spinel-rich lithology in lunar meteorite ALHA 87005: Origin and possible connection to M3 observations of the farside highlands. J. Geophys. Res. 116, E10009 (2011).

    Article  Google Scholar 

  9. Pieters, C. et al. Mg-spinel lithology: A new rock type on the lunar farside. J. Geophys. Res. 116, E00G08 (2011).

    Article  Google Scholar 

  10. Pieters, C. Conspicuous crater central peak: Lunar mountain of unique composition. Science 215, 59–61 (1982).

    Article  Google Scholar 

  11. Yamamoto, S. et al. Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nature Geoscience 3, 533–536 (2010).

    Article  Google Scholar 

  12. Sunshine, J., Connolly, H. C., McCoy, T. J., Bus, S. J. & La Croix, L. M. Ancient asteroids enriched in refractory inclusions. Science 320, 514–517 (2008).

    Article  Google Scholar 

  13. Brearley, A. J. & Jones, R. H. in Planetary Materials, Rev. Mineral Vol. 36 (eds Papike, J. J. & Ribbe, P. H.) 1–398 (Mineral. Soc. Amer., 1998).

    Google Scholar 

  14. Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. in Planetary Materials, Rev. Mineral Vol. 36 (eds Papike, J. J. & Ribbe, P. H.) 1–195 (Mineral. Soc. Amer., 1998).

    Google Scholar 

  15. Burbine, T. H. & Binzel, R. P. Small main-belt asteroid spectroscopic survey in the near-infrared. Icarus 159, 469–499 (2002).

    Article  Google Scholar 

  16. Dhingra, D. & Pieters, C. Mg-spinel rich lithology at crater Copernicus. LPSC Conference, XVII: Abs. #2024 (2011).

  17. Dhingra, D. et al. Compositional diversity at Theophilus crater: Understanding the geological context of Mg-spinel bearing central peaks. Geophys. Res. Lett. 38, L11201 (2011).

    Article  Google Scholar 

  18. Kaur, P., Chauhan, P., Bhattacharya, S., Kiran, A. J. & Kumar, S. Compositiional diversity at Tycho crater: Mg-spinel exposures detected from Moon Mineralogical Mapper (M3) data. LPSC Conference, XLIII: Abs. #1434 (2012).

  19. Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., Lombardi, D. & Spohn, T. A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet Inter. 159, 140–166 (2006).

    Article  Google Scholar 

  20. Grieve, R. A. F., Robertson, P. B. & Dence, M. R. in Multiring Basins (eds Schultz, P. H. & Merrill, R. B.) 37–57 (Pergamon, 1981).

    Google Scholar 

  21. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989).

    Google Scholar 

  22. Pierazzo, E. & Melosh, H. J. Understanding oblique impacts from experiments, observations and modeling. Annu. Rev. Earth Planet Sci. 28, 141–167 (2000).

    Article  Google Scholar 

  23. Eckholm, A. & Melosh, H. J. Crater features diagnostic of oblique impacts: The size and position of the central peak. Geophys. Res. Lett. 28, 623–626 (2001).

    Article  Google Scholar 

  24. Bottke, W. F., Nolan, M. C., Melosh, H. J., Vickery, A. M. & Greenberg, R. Origin of the Spacewatch small Earth-approaching asteroids. Icarus 122, 406–427 (1996).

    Article  Google Scholar 

  25. Minton, D. A. & Malhotra, R. A record of planet migration in the main asteroid belt. Nature 457, 1109–1111 (2009).

    Article  Google Scholar 

  26. Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    Article  Google Scholar 

  27. Marchi, S., Mottola, S., Cremonese, G., Massironi, M. & Martellato, E. A new chronology for the Moon and Mercury. Astrophys. J. 137, 4936–4948 (2009).

    Google Scholar 

  28. Joy, K. H. et al. Direct detection of projectile relics from the end of the lunar basin-forming epoch. Science 336, 1426–1429 (2012).

    Article  Google Scholar 

  29. De Sanctis, M. C. et al. Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697–700 (2012).

    Article  Google Scholar 

  30. Smith, D. E. et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Science Rev. 150, 209–241 (2009).

    Article  Google Scholar 

Download references


We gratefully acknowledge the developers of iSALE2D, the simulation code used in our research, including G. Collins, K. Wünnemann, B. Ivanov and D. Elbeshausen. We thank B. Bottke for pointing out the further implications of Mg-spinel and helpful discussion. The research was supported by the National Natural Science Foundation of China (Grant No. 41002120 and 41171355) and NASA PGG grant NNX10AU88G.

Author information

Authors and Affiliations



Z.Y. conceived the research and implemented the Copernicus simulations with the help of B.C.J., who refined the hydrocode models to better fit the observations and created the crater profile from LOLA data; H.J.M. first realized the possibility that the olivine in Copernicus central peaks might be from the projectile; D.A.M. proved the presumption of low impact velocity on the lunar surface, and Z.Y. confirmed the similarity of mafic minerals between the central peaks and the asteroid. K.D., W.H. and Y.L. obtained and processed data used to support our research.

Corresponding author

Correspondence to H. J. Melosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 617 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yue, Z., Johnson, B., Minton, D. et al. Projectile remnants in central peaks of lunar impact craters. Nature Geosci 6, 435–437 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing