Abstract
The Middle Eocene Climatic Optimum (MECO) was an approximately 500,000-year-long episode of widespread ocean–atmosphere warming about 40 million years ago, superimposed on a long-term middle Eocene cooling trend. It was marked by a rise in atmospheric CO2 concentrations, biotic changes and prolonged carbonate dissolution in the deep ocean. However, based on carbon cycle theory, a rise in atmospheric CO2 and warming should have enhanced continental weathering on timescales of the MECO. This should have in turn increased ocean carbonate mineral saturation state and carbonate burial in deep-sea sediments, rather than the recorded dissolution. We explore several scenarios using a carbon cycle model in an attempt to reconcile the data with theory, but these simulations confirm the problem. The model only produces critical MECO features when we invoke a sea-level rise, which redistributes carbonate burial from deep oceans to continental shelves and decreases shelf sediment weathering. Sufficient field data to assess this scenario is currently lacking. We call for an integrated approach to unravel Earth system dynamics during carbon cycle variations that are of intermediate timescales (several hundreds of thousands of years), such as the MECO.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Walker, J. C. G. & Kasting, J. F. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151–189 (1992).
Ridgwell, A. & Hargreaves, J. C. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system mode. Glob. Biogeochem. Cycles 21, GB2008 (2007).
Zeebe, R. E., History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification. Annu. Rev. Earth Planet. Sci. 40, 141–165 (2012).
Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).
Archer, D., Winguth, A., Lea, D. & Mahowald, N. What caused the glacial/interglacial pCO2 cycles? Rev. Geophys. 38, 159–189 (2000).
Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth's surface-temperature. J. Geophys. Res. 86, 9776–9782 (1981).
Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).
Dickens, G. R., Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213, 169–183 (2003).
Dickens, G. R. Down the rabbit hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene — Eocene thermal maximum and other past hyperthermal events. Clim. Past 7, 831–846 (2011).
Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J. & Thomas, E. in Deep Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N.) 323–349 (The Geological Society London, 2007).
Lourens, L. J. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005).
Thomas, E. & Zachos, J. C. Was the late Paleocene thermal maximum a unique event? Geologiska Föreningens i Stockholm Förhandlingar 122, 169–170 (2000).
Koch, P. L., Zachos, J. C. & Gingerich, P. D. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 (1992).
Colosimo, A. B., Bralower, T. J. & Zachos, J. C. in Proceedings of the Ocean Drilling Program, Scientific Results 198 (eds Bralower, T. J., Premoli Silva, I. & Malone, M. J.) 1–36 (Ocean Drilling Program, 2005).
Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).
Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997).
Cui, Y. et al. Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum. Nature Geosci. 4, 481–485 (2011).
Zachos, J. C. et al., The Palaeocene-Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records. Phil. Trans. R. Soc. A 365, 1829–1842 (2007).
Sluijs, A., Zachos, J. C. & Zeebe, R. E. Constraints on hyperthermals. Nature Geosci. 5, 231–231 (2012).
Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).
Sluijs, A. & Dickens, G. R., Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across Early Paleogene carbon cycle perturbations. Glob. Biogeochem. Cycles 26, GB4005 (2012).
Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009).
Pagani, M., Caldeira, K., Archer, D. & Zachos, J. C. An ancient carbon mystery. Science 314, 1556–1557 (2006).
Sluijs, A. et al. Environmental precursors to light carbon input at the Paleocene/Eocene boundary. Nature 450, 1218–1221 (2007).
Kurtz, A., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1090 (2003).
DeConto, R. M. et al. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484, 87–91 (2012).
Bohaty, S. & Zachos, J. C. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017–1020 (2003).
Bohaty, S. M., Zachos, J. C., Florindo, F. & Delaney, M. L. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24, PA2207 (2009).
Bijl, P. K. et al. Environmental forcings of Paleogene Southern Ocean dinoflagellate biogeography. Paleoceanography 26, PA1202 (2011).
Villa, G., Fioroni, C., Pea, L., Bohaty, S. & Persico, D. Middle Eocene–late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Mar. Micropaleontol. 69, 173–192 (2008).
Bijl, P. K. et al. Transient Middle Eocene atmospheric CO2 and temperature tariations. Science 330, 819–821 (2010).
Spofforth, D. J. A. et al. Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys. Paleoceanography 25, PA3210 (2010).
Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).
Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).
Zeebe, R. E. LOSCAR: Long-term ocean-atmosphere-sediment carbon cycle reservoir model v2.0.4. Geosci. Mod. Dev. 5, 149–166 (2012).
Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).
Dawber, C. F., Tripati, A. K., Gale, A. S., MacNiocaill, C. & Hesselbo, S. P. Glacioeustasy during the middle Eocene? Insights from the stratigraphy of the Hampshire Basin, UK. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 84–100 (2011).
Berger, W. H. Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69, 87–88 (1982).
Kump, L. R. & Arthur, M. A. in Tectonic Uplift and Climate Change (ed. Ruddiman, W.) 399–426 (Plenum, 1997).
Opdyke, B. N. & Wilkinson, B. H. Carbonate mineral saturation state and cratonic limestone accumulation. Am. J. Sci. 293, 217–234 (1993).
Archer, D. E., An atlas of the distribution of calcium carbonate in sediments of the deep sea. Glob. Biogeochem. Cycles 10, 159–174 (1996).
Sundquist, E. T. in The Changing Carbon Cycle, A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 371–402 (Springer, 1986).
Hancock, H. J. L. & Dickens, G. R. in Proceedings of the Ocean Drilling Program, Scientific Results 198 (eds Bralower, T. J., Premoli Silva, I. & Malone, M. J.) 1–24 (Ocean Drilling Program, College Station, Texas, 2005).
Lyle, M., Lyle, A. O., Backman, J. & Tripati, A. in Proceedings of the Ocean Drilling Program Scientific Results 199 (eds Wilson, P. A., Lyle, M. & Firth, J. V.) (Ocean Drilling Program, College Station, Texas, 2005).
Vandenberghe, N., Speijer, R. P. & Hilgen, F. J. in The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G.) 855–921 (Elsevier, 2012).
Zeebe, R. E. & Zachos, J. C. Reversed deep-sea carbonate ion basin gradient during the Paleocene–Eocene thermal maximum. Paleoceanography 22, PA3301 (2007).
Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. (Elsevier, 2001).
Tyrrell, T. & Zeebe, R. E. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68, 3521–3530 (2004).
Acknowledgements
This research used data generated on sediments provided by the Integrated Ocean Drilling Program (IODP). We thank L. Kump (Penn State) for discussions and T. Markus (Utrecht University) for illustration support. The European Research Council under the European Community's Seventh Framework Program provided funding for this work by ERC Starting Grant #259627 to A.S. This paper resulted from a sabbatical stay of R.E.Z. at Utrecht University, funded through a Visitors Travel Grant awarded to A.S. by the Netherlands Organisation for Scientific Research (NWO grant #040.11.305).
Author information
Authors and Affiliations
Contributions
A.S. identified the carbon cycle conundrum. R.E.Z. carried out the modelling. P.K.B. and S.M.B. provided ideas and performed the final data compilation. A.S. wrote the paper with input from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Sluijs, A., Zeebe, R., Bijl, P. et al. A middle Eocene carbon cycle conundrum. Nature Geosci 6, 429–434 (2013). https://doi.org/10.1038/ngeo1807
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo1807