Abstract
In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable ‘icehouse’ climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene–Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) δ18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ∼25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005).
Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate change 65 Ma to present. Science 292, 686–293 (2001).
Kennett, J. P. Cenozoic evolution of antarctic glaciation, the Circum-Antarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860 (1977).
Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96, 6829–6848 (1991).
Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).
Zachos, J. C., Quinn, T. M. & Salamy, S. High resolution (104 yr) deep-sea foraminiferal stable isotope records of the earliest Oligocene climate transition. Paleoceanography 9, 353–387 (1996).
Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005).
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition. Geology 36, 251–254 (2008).
Browning, J. V., Miller, K. G. & Pak, D. K. Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain; the icehouse cometh. Geology 24, 639–642 (1996).
Sagnotti, L., Florindo, F., Verosub, K. L., Wilson, G. S. & Roberts, A. P. Environmental magnetic record of Antarctic palaeoclimate from Eocene/Oligocene glaciomarine sediments, Victoria Land Basin. Geophys. J. Int. 134, 653–662 (1998).
Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005).
Miller, K. G., Wright, J. D. & Browning, J. V. Visions of ice sheets in a greenhouse world. Mar. Geol. 217, 215–231 (2005).
Prothero, D. R., Ivany, L. C. & Nesbitt, E. A. (eds) From Greenhouse to Icehouse: The Marine Eocene–Oligocene Transition (Columbia Univ. Press, New York, 2003).
Pearson, P. N. et al. Extinction and environmental change across the Eocene–Oligocene boundary in Tanzania. Geology 36, 179–182 (2008).
Kennett, J. P. & Shackleton, N. J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature 260, 513–515 (1976).
Lear, C. H., Rosenthal, Y., Coxall, H. K. & Wilson, P. A. Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle. Paleoceanography 19doi:10.1029/2004PA001039 (2004).
Miller, K. G. et al. Eocene–Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama. GSA Bull. 12, 34–53 (2008).
Tauxe, L. P. & Hartl, P. 11 million years of Oligocene geomagnetic field behavior. Geophys. J. Int. 128, 217–229 (1997).
Miller, K. G., Feigenson, M. D., Kent, D. V. & Olsson, R. K. Oligocene stable isotope (87Sr/86Sr, d18O, d13C) standard section, Deep Sea Drilling Project Site 522. Paleoceanography 3, 223–233 (1988).
Zachos, J. C., Breza, J. & Wise, S. W. Jr. Early Oligocene ice-sheet expansion on Antarctica, sedimentological and isotopic evidence from Kerguelen Plateau. Geology 20, 569–573 (1992).
Miller, K. G., Thompson, P. R. & Kent, D. V. Integrated stratigraphy of the Alabama coastal plain: Relationship of upper Eocene to Oligocene unconformities to glacioeustatic change. Paleoceanography 8, 313–331 (1993).
Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).
Billups, K. & Schrag, D. P. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change. Earth Planet. Sci. Lett. 209, 181–195 (2003).
van Andel, T. H. & Moore, T. C. Jr. Cenozoic calcium carbonate distribution and calcite compensation depth in the central equatorial Pacific. Geology 2, 87–92 (1974).
Dupont-Nivet, G. et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635–638 (2007).
Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, J., O. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature 445, 639–642 (2007).
Kominz, M. A. & Pekar, S. F. Oligocene eustasy from two-dimensional sequence stratigraphic backstripping. Geol. Soc. Am. Bull. 113, 291–314 (2001).
Levitus, S. NOAA Professional Paper 13 (US Government Printing Office, Washington, 1982).
Conkright, M. E. et al. World Ocean Atlas: Nutrient and Chlorophyll of the Atlantic Ocean (US Government Printing Office, Washington, 1998).
Kobashi, T., Grossman, E. L., Dockery, D. T. III & Ivany, L. C. Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA). Paleoceanography 19doi:10.1029/2003PA000934 (2004).
<http://www7300.nrlssc.navy.mil/altimetry/regions/reg_gom.html>, NRLSSC.
Brinkhuis, H. & Visscher, H. in Geochronology, Timescales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 295–304 (Society of Economic Paleontologists and Mineralogists, 1995).
Fairbanks, R. G. & Matthews, R. K. The marine oxygen isotopic record in Pleistocene coral, Barbados, West Indies. Quat. Res. 10, 181–196 (1978).
Pekar, S. F., Christie-Blick, N., Kominz, M. A. & Miller, K. G. Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene. Geology 30, 903–906 (2002).
Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001).
Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984).
Williams, R. S. Jr & Ferrigno, J. G. (eds) Satellite Image Atlas of Glaciers of the World (US Geological Survey Professional Paper, Vol. 1386-C, 1999).
White, T., González, L., Ludvigson, G. & Poulsen, C. Middle Cretaceous greenhouse hydrologic cycle of North America. Geology 29, 363–366 (2001).
De Conto, R. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003).
Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).
Wade, B. S. & Pälike, H. Oligocene climate dynamics. Paleoceanography 19doi:10.1029/2004PA001042 (2004).
Pekar, S. F., DeConto, R. M. & Harwood, D. M. Resolving a Late Oligocene conundrum: Deep-sea warming and Antarctic glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 29–40 (2006).
Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate–water isotopic temperature scale. Geol. Soc. Am. Bull. 64, 1315–1326 (1953).
Katz, M. E. et al. Early Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction factors. Paleoceanography 18 (2003).
Shackleton, N. J., Hall, M. A. & Boersma, A. Jr. in Init. Repts. DSDP (eds Moore, T. C. & Rabinowitz, P. D.) 599–612 (1984).
Coplen, T. B. Discontinuance of SMOW and PDB. Nature 375, 285 (1995).
Lear, C., Rosenthal, Y. & Slowey, N. Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration. Geochim. Cosmochim. Acta 66, 3375–3387 (2002).
Wilkinson, B. H. & Algeo, T. J. Sedimentary carbonate record of calcium–magnesium cycling. Am. J. Sci. 289, 1158–1194 (1989).
Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubry, M.-P. in Geochronology, Time Scales and Global Stratigraphic Correlations: A Unified Temporal Framework for an Historical Geology (eds Berggren, W. A., Kent, D. V. & Hardenbol, J.) 129–212 (SEPM (Society for Sedimentary Geology), Tulsa, 1995).
Acknowledgements
This research was supported by NSF grants OCE 06-23256 (M.E.K., K.G.M., B.S.W., J.D.W.), EAR03-07112 (K.G.M.) and EAR05-06720 (K.G.M.).
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary figures S1 and tables S1-S2 (PDF 172 kb)
Rights and permissions
About this article
Cite this article
Katz, M., Miller, K., Wright, J. et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geosci 1, 329–334 (2008). https://doi.org/10.1038/ngeo179
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo179
This article is cited by
-
Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition
Nature Communications (2023)
-
Geological implications of elements of the Pleistocene mudstone with different organism compositions and enrichment environments in the Qaidam Basin, China
Frontiers of Earth Science (2023)
-
Deep-sea benthic foraminiferal response to the early Oligocene cooling: a study from the Southern Ocean ODP Hole 1138A
Geo-Marine Letters (2023)
-
60 million years of glaciation in the Transantarctic Mountains
Nature Communications (2022)
-
Magnetostratigraphic evidence for post-depositional distortion of osmium isotopic records in pelagic clay and its implications for mineral flux estimates
Earth, Planets and Space (2021)