Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stepwise transition from the Eocene greenhouse to the Oligocene icehouse

Abstract

In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable ‘icehouse’ climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene–Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) δ18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were 25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SSQ proxy data for ice volume, temperature and sea level.
Figure 2: Comparisons of δ18Obf from Site 522 (ref. 7), Site 1218 (ref. 8) and SSQ (see Supplementary Information, Table S2).
Figure 3: Comparisons of δw from Site 522, Site 1218, and SSQ with sea level.

Similar content being viewed by others

References

  1. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005).

    Article  Google Scholar 

  2. Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).

    Article  Google Scholar 

  3. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate change 65 Ma to present. Science 292, 686–293 (2001).

    Article  Google Scholar 

  4. Kennett, J. P. Cenozoic evolution of antarctic glaciation, the Circum-Antarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860 (1977).

    Article  Google Scholar 

  5. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96, 6829–6848 (1991).

    Article  Google Scholar 

  6. Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    Article  Google Scholar 

  7. Zachos, J. C., Quinn, T. M. & Salamy, S. High resolution (104 yr) deep-sea foraminiferal stable isotope records of the earliest Oligocene climate transition. Paleoceanography 9, 353–387 (1996).

    Article  Google Scholar 

  8. Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005).

    Article  Google Scholar 

  9. Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition. Geology 36, 251–254 (2008).

    Article  Google Scholar 

  10. Browning, J. V., Miller, K. G. & Pak, D. K. Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain; the icehouse cometh. Geology 24, 639–642 (1996).

    Article  Google Scholar 

  11. Sagnotti, L., Florindo, F., Verosub, K. L., Wilson, G. S. & Roberts, A. P. Environmental magnetic record of Antarctic palaeoclimate from Eocene/Oligocene glaciomarine sediments, Victoria Land Basin. Geophys. J. Int. 134, 653–662 (1998).

    Article  Google Scholar 

  12. Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005).

    Article  Google Scholar 

  13. Miller, K. G., Wright, J. D. & Browning, J. V. Visions of ice sheets in a greenhouse world. Mar. Geol. 217, 215–231 (2005).

    Article  Google Scholar 

  14. Prothero, D. R., Ivany, L. C. & Nesbitt, E. A. (eds) From Greenhouse to Icehouse: The Marine Eocene–Oligocene Transition (Columbia Univ. Press, New York, 2003).

  15. Pearson, P. N. et al. Extinction and environmental change across the Eocene–Oligocene boundary in Tanzania. Geology 36, 179–182 (2008).

    Article  Google Scholar 

  16. Kennett, J. P. & Shackleton, N. J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature 260, 513–515 (1976).

    Article  Google Scholar 

  17. Lear, C. H., Rosenthal, Y., Coxall, H. K. & Wilson, P. A. Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle. Paleoceanography 19doi:10.1029/2004PA001039 (2004).

  18. Miller, K. G. et al. Eocene–Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama. GSA Bull. 12, 34–53 (2008).

    Article  Google Scholar 

  19. Tauxe, L. P. & Hartl, P. 11 million years of Oligocene geomagnetic field behavior. Geophys. J. Int. 128, 217–229 (1997).

    Article  Google Scholar 

  20. Miller, K. G., Feigenson, M. D., Kent, D. V. & Olsson, R. K. Oligocene stable isotope (87Sr/86Sr, d18O, d13C) standard section, Deep Sea Drilling Project Site 522. Paleoceanography 3, 223–233 (1988).

    Article  Google Scholar 

  21. Zachos, J. C., Breza, J. & Wise, S. W. Jr. Early Oligocene ice-sheet expansion on Antarctica, sedimentological and isotopic evidence from Kerguelen Plateau. Geology 20, 569–573 (1992).

    Article  Google Scholar 

  22. Miller, K. G., Thompson, P. R. & Kent, D. V. Integrated stratigraphy of the Alabama coastal plain: Relationship of upper Eocene to Oligocene unconformities to glacioeustatic change. Paleoceanography 8, 313–331 (1993).

    Article  Google Scholar 

  23. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

    Article  Google Scholar 

  24. Billups, K. & Schrag, D. P. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change. Earth Planet. Sci. Lett. 209, 181–195 (2003).

    Article  Google Scholar 

  25. van Andel, T. H. & Moore, T. C. Jr. Cenozoic calcium carbonate distribution and calcite compensation depth in the central equatorial Pacific. Geology 2, 87–92 (1974).

    Article  Google Scholar 

  26. Dupont-Nivet, G. et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635–638 (2007).

    Article  Google Scholar 

  27. Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, J., O. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature 445, 639–642 (2007).

    Article  Google Scholar 

  28. Kominz, M. A. & Pekar, S. F. Oligocene eustasy from two-dimensional sequence stratigraphic backstripping. Geol. Soc. Am. Bull. 113, 291–314 (2001).

    Article  Google Scholar 

  29. Levitus, S. NOAA Professional Paper 13 (US Government Printing Office, Washington, 1982).

    Google Scholar 

  30. Conkright, M. E. et al. World Ocean Atlas: Nutrient and Chlorophyll of the Atlantic Ocean (US Government Printing Office, Washington, 1998).

    Google Scholar 

  31. Kobashi, T., Grossman, E. L., Dockery, D. T. III & Ivany, L. C. Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA). Paleoceanography 19doi:10.1029/2003PA000934 (2004).

  32. <http://www7300.nrlssc.navy.mil/altimetry/regions/reg_gom.html>, NRLSSC.

  33. Brinkhuis, H. & Visscher, H. in Geochronology, Timescales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 295–304 (Society of Economic Paleontologists and Mineralogists, 1995).

    Book  Google Scholar 

  34. Fairbanks, R. G. & Matthews, R. K. The marine oxygen isotopic record in Pleistocene coral, Barbados, West Indies. Quat. Res. 10, 181–196 (1978).

    Article  Google Scholar 

  35. Pekar, S. F., Christie-Blick, N., Kominz, M. A. & Miller, K. G. Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene. Geology 30, 903–906 (2002).

    Article  Google Scholar 

  36. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001).

    Article  Google Scholar 

  37. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984).

    Article  Google Scholar 

  38. Williams, R. S. Jr & Ferrigno, J. G. (eds) Satellite Image Atlas of Glaciers of the World (US Geological Survey Professional Paper, Vol. 1386-C, 1999).

  39. White, T., González, L., Ludvigson, G. & Poulsen, C. Middle Cretaceous greenhouse hydrologic cycle of North America. Geology 29, 363–366 (2001).

    Article  Google Scholar 

  40. De Conto, R. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003).

    Article  Google Scholar 

  41. Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

    Article  Google Scholar 

  42. Wade, B. S. & Pälike, H. Oligocene climate dynamics. Paleoceanography 19doi:10.1029/2004PA001042 (2004).

  43. Pekar, S. F., DeConto, R. M. & Harwood, D. M. Resolving a Late Oligocene conundrum: Deep-sea warming and Antarctic glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 29–40 (2006).

    Article  Google Scholar 

  44. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate–water isotopic temperature scale. Geol. Soc. Am. Bull. 64, 1315–1326 (1953).

    Article  Google Scholar 

  45. Katz, M. E. et al. Early Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction factors. Paleoceanography 18 (2003).

    Article  Google Scholar 

  46. Shackleton, N. J., Hall, M. A. & Boersma, A. Jr. in Init. Repts. DSDP (eds Moore, T. C. & Rabinowitz, P. D.) 599–612 (1984).

    Google Scholar 

  47. Coplen, T. B. Discontinuance of SMOW and PDB. Nature 375, 285 (1995).

    Article  Google Scholar 

  48. Lear, C., Rosenthal, Y. & Slowey, N. Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration. Geochim. Cosmochim. Acta 66, 3375–3387 (2002).

    Article  Google Scholar 

  49. Wilkinson, B. H. & Algeo, T. J. Sedimentary carbonate record of calcium–magnesium cycling. Am. J. Sci. 289, 1158–1194 (1989).

    Article  Google Scholar 

  50. Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubry, M.-P. in Geochronology, Time Scales and Global Stratigraphic Correlations: A Unified Temporal Framework for an Historical Geology (eds Berggren, W. A., Kent, D. V. & Hardenbol, J.) 129–212 (SEPM (Society for Sedimentary Geology), Tulsa, 1995).

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF grants OCE 06-23256 (M.E.K., K.G.M., B.S.W., J.D.W.), EAR03-07112 (K.G.M.) and EAR05-06720 (K.G.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam E. Katz.

Supplementary information

Supplementary Information

Supplementary figures S1 and tables S1-S2 (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, M., Miller, K., Wright, J. et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geosci 1, 329–334 (2008). https://doi.org/10.1038/ngeo179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing