Abstract
Changes in atmospheric circulation over the past five decades have enhanced the wind-driven inflow of warm ocean water onto the Antarctic continental shelf, where it melts ice shelves from below1,2,3. Atmospheric circulation changes have also caused rapid warming4 over the West Antarctic Ice Sheet, and contributed to declining sea-ice cover in the adjacent Amundsen–Bellingshausen seas5. It is unknown whether these changes are part of a longer-term trend. Here, we use water-isotope (δ18O) data from an array of ice-core records to place recent West Antarctic climate changes in the context of the past two millennia. We find that the δ18O of West Antarctic precipitation has increased significantly in the past 50 years, in parallel with the trend in temperature, and was probably more elevated during the 1990s than at any other time during the past 200 years. However, δ18O anomalies comparable to those of recent decades occur about 1% of the time over the past 2,000 years. General circulation model simulations suggest that recent trends in δ18O and climate in West Antarctica cannot be distinguished from decadal variability that originates in the tropics. We conclude that the uncertain trajectory of tropical climate variability represents a significant source of uncertainty in projections of West Antarctic climate and ice-sheet change.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106–110 (2008).
Thoma, M., Jenkins, A. & Holland, D. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35, L18602 (2008).
Jenkins, A. et al. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci. 3, 468–472 (2010).
Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009).
Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. 113, C02S07 (2008).
Orsi, A. J., Cornuelle, B. D. & Severinghaus, J. P. Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophys. Res. Lett. 39, L09710 (2012).
Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geosci. 6, 139–145 (2013).
Steig, E. J., Ding, Q., Battisti, D. S. & Jenkins, A. Tropical forcing of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Annal. Glaciol. 53, 19–28 (2012).
Schneider, D. P., Deser, C. & Okumura, Y. An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim. Dyn. 38, 323–347 (2011).
Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci. 4, 398–403 (2011).
Küttel, M., Steig, E. J., Ding, Q., Battisti, D. S. & Monaghan, A. J. Seasonal climate information preserved in West Antarctic ice core water isotopes: Relationships to temperature, large-scale circulation, and sea ice. Clim. Dyn. 39, 1841–1857 (2012).
Noone, D. & Simmonds, I. Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J. Geophys. Res. 109, D07105 (2004).
Neumann, T. A. et al. Holocene accumulation and ice sheet dynamics in central West Antarctica. J. Geophys. Res. 113, F02018 (2008).
Mulvaney, R. et al. Recent Antarctic Peninsula warming relative to Holocene climate and ice shelf history. Nature 489, 141–144 (2012).
Ding, Q., Steig, E. J., Battisti, D. S. & Wallace, J. M. Influence of the tropics on the Southern Annular Mode. J. Clim. 25, 6330–6348 (2012).
Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci. 4, 741–749 (2011).
Dixon, D. A. et al. An ice-core proxy for northerly air mass incursions into West Antarctica. Int. J. Climatol. 32, 1455–1465 (2012).
Schneider, D. P. & Steig, E. J. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl Acad. Sci. USA 105, 12154–12158 (2008).
Okumura, Y., Schneider, D. P., Deser, C. & Wilson, R. Decadal-interdecadal climate variability over Antarctica and linkages to the tropics: Analysis of ice core, instrumental, and tropical proxy data. J. Clim. 25, 7421–7441 (2012).
Latif, M., Kleeman, R. & Eckert, C. Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Clim. 10, 2221–2239 (1997).
McGregor, S., Timmermann, A. & Timm, O. A unified proxy for ENSO and PDO variability since 1650. Clim. Past 6, 1–17 (2010).
Roeckner, E. et al. The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate (Max Planck Institut für Meteorologie Report 218, 90, 1996).
Hoffmann, G., Werner, M. & Heimann, M. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. J. Geophys. Res. 103, 16871–16896 (1998).
Vance, T. et al. A millennial proxy record of ENSO and eastern Australian rainfall from the Law Dome ice core, East Antarctica. J. Clim. 26, 710–725 (2013).
Dinezio, P. N. et al. Climate response of the equatorial Pacific to global warming. J. Clim. 22, 4873–4892 (2009).
Solomon, A. & Newman, M. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nature Clim. Change 2, 691–699 (2012).
Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).
Miller, R. L., Schmidt, G. A. & Shindell, D. T. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. 111, D18101 (2006).
Deser, C., Phillips, A. S., Bourdette, V. & Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 38, 527–546 (2012).
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).
Acknowledgements
This work was supported by the National Science Foundation Office of Polar Programs (grant numbers 0537930, 0837988, 0963924 and 1043092 to E.J.S.; 05379853 and 1043167 to J.W.C.W.; 0944730 to S.B.R.; 0230396, 0440817, 0944348 and 0944266 to K.C.T.; 0096305, 9316564, 0096299, 0424589, 0439589, 063740, 063650 and 0837883 to P.A.M.; 0838871 to D.P.S.). NCAR is sponsored by the National Science Foundation. We thank A. Orsi, J. Bautista and J. Flaherty.
Author information
Authors and Affiliations
Contributions
E.J.S., J.W.C.W., S.B.R., P.D.N., B.R.M., B.H.V., D.P.S., S.W.S., T.A.N., P.A.M., K.C.T., T.J.F., D.A.D. and E.K. conducted fieldwork and sample collection. P.D.N., A.J.S., R.P.T., B.H.V., E.K., E.J.S., D.P.S., J.W.C.W., S.B.R., L.B. and J.W. obtained the ice-core water-isotope data. G.H. provided code and assistance with the modelling. E.J.S. and Q.D. compiled the data, conducted the model experiments and calculations and wrote the paper. All authors contributed to the final manuscript text.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2761 kb)
Rights and permissions
About this article
Cite this article
Steig, E., Ding, Q., White, J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geosci 6, 372–375 (2013). https://doi.org/10.1038/ngeo1778
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo1778
This article is cited by
-
Seasonal temperatures in West Antarctica during the Holocene
Nature (2023)
-
Forced changes in the Pacific Walker circulation over the past millennium
Nature (2023)
-
The role of large-scale drivers in the Amundsen Sea Low variability and associated changes in water isotopes from the Roosevelt Island ice core, Antarctica
Climate Dynamics (2023)
-
The Processes-Based Attributes of Four Major Surface Melting Events over the Antarctic Ross Ice Shelf
Advances in Atmospheric Sciences (2023)
-
Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming
Nature Communications (2022)