Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years

Abstract

Changes in atmospheric circulation over the past five decades have enhanced the wind-driven inflow of warm ocean water onto the Antarctic continental shelf, where it melts ice shelves from below1,2,3. Atmospheric circulation changes have also caused rapid warming4 over the West Antarctic Ice Sheet, and contributed to declining sea-ice cover in the adjacent Amundsen–Bellingshausen seas5. It is unknown whether these changes are part of a longer-term trend. Here, we use water-isotope (δ18O) data from an array of ice-core records to place recent West Antarctic climate changes in the context of the past two millennia. We find that the δ18O of West Antarctic precipitation has increased significantly in the past 50 years, in parallel with the trend in temperature, and was probably more elevated during the 1990s than at any other time during the past 200 years. However, δ18O anomalies comparable to those of recent decades occur about 1% of the time over the past 2,000 years. General circulation model simulations suggest that recent trends in δ18O and climate in West Antarctica cannot be distinguished from decadal variability that originates in the tropics. We conclude that the uncertain trajectory of tropical climate variability represents a significant source of uncertainty in projections of West Antarctic climate and ice-sheet change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of West Antarctica.
Figure 2: West Antarctic temperature and δ18O.
Figure 3: Decade-average δ18O from the WAIS Divide ice core for the past 2,000 years.
Figure 4: Modelled versus observed West Antarctic δ18O and tropical SSTs.

References

  1. Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106–110 (2008).

    Article  Google Scholar 

  2. Thoma, M., Jenkins, A. & Holland, D. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35, L18602 (2008).

    Article  Google Scholar 

  3. Jenkins, A. et al. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci. 3, 468–472 (2010).

    Article  Google Scholar 

  4. Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009).

    Article  Google Scholar 

  5. Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. 113, C02S07 (2008).

    Google Scholar 

  6. Orsi, A. J., Cornuelle, B. D. & Severinghaus, J. P. Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophys. Res. Lett. 39, L09710 (2012).

    Article  Google Scholar 

  7. Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geosci. 6, 139–145 (2013).

    Article  Google Scholar 

  8. Steig, E. J., Ding, Q., Battisti, D. S. & Jenkins, A. Tropical forcing of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Annal. Glaciol. 53, 19–28 (2012).

    Article  Google Scholar 

  9. Schneider, D. P., Deser, C. & Okumura, Y. An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim. Dyn. 38, 323–347 (2011).

    Article  Google Scholar 

  10. Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci. 4, 398–403 (2011).

    Article  Google Scholar 

  11. Küttel, M., Steig, E. J., Ding, Q., Battisti, D. S. & Monaghan, A. J. Seasonal climate information preserved in West Antarctic ice core water isotopes: Relationships to temperature, large-scale circulation, and sea ice. Clim. Dyn. 39, 1841–1857 (2012).

    Article  Google Scholar 

  12. Noone, D. & Simmonds, I. Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J. Geophys. Res. 109, D07105 (2004).

    Article  Google Scholar 

  13. Neumann, T. A. et al. Holocene accumulation and ice sheet dynamics in central West Antarctica. J. Geophys. Res. 113, F02018 (2008).

    Article  Google Scholar 

  14. Mulvaney, R. et al. Recent Antarctic Peninsula warming relative to Holocene climate and ice shelf history. Nature 489, 141–144 (2012).

    Article  Google Scholar 

  15. Ding, Q., Steig, E. J., Battisti, D. S. & Wallace, J. M. Influence of the tropics on the Southern Annular Mode. J. Clim. 25, 6330–6348 (2012).

    Article  Google Scholar 

  16. Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci. 4, 741–749 (2011).

    Article  Google Scholar 

  17. Dixon, D. A. et al. An ice-core proxy for northerly air mass incursions into West Antarctica. Int. J. Climatol. 32, 1455–1465 (2012).

    Article  Google Scholar 

  18. Schneider, D. P. & Steig, E. J. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl Acad. Sci. USA 105, 12154–12158 (2008).

    Article  Google Scholar 

  19. Okumura, Y., Schneider, D. P., Deser, C. & Wilson, R. Decadal-interdecadal climate variability over Antarctica and linkages to the tropics: Analysis of ice core, instrumental, and tropical proxy data. J. Clim. 25, 7421–7441 (2012).

    Article  Google Scholar 

  20. Latif, M., Kleeman, R. & Eckert, C. Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Clim. 10, 2221–2239 (1997).

    Article  Google Scholar 

  21. McGregor, S., Timmermann, A. & Timm, O. A unified proxy for ENSO and PDO variability since 1650. Clim. Past 6, 1–17 (2010).

    Article  Google Scholar 

  22. Roeckner, E. et al. The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate (Max Planck Institut für Meteorologie Report 218, 90, 1996).

  23. Hoffmann, G., Werner, M. & Heimann, M. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. J. Geophys. Res. 103, 16871–16896 (1998).

    Article  Google Scholar 

  24. Vance, T. et al. A millennial proxy record of ENSO and eastern Australian rainfall from the Law Dome ice core, East Antarctica. J. Clim. 26, 710–725 (2013).

    Article  Google Scholar 

  25. Dinezio, P. N. et al. Climate response of the equatorial Pacific to global warming. J. Clim. 22, 4873–4892 (2009).

    Article  Google Scholar 

  26. Solomon, A. & Newman, M. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nature Clim. Change 2, 691–699 (2012).

    Article  Google Scholar 

  27. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).

    Article  Google Scholar 

  28. Miller, R. L., Schmidt, G. A. & Shindell, D. T. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. 111, D18101 (2006).

    Article  Google Scholar 

  29. Deser, C., Phillips, A. S., Bourdette, V. & Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Article  Google Scholar 

  30. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Office of Polar Programs (grant numbers 0537930, 0837988, 0963924 and 1043092 to E.J.S.; 05379853 and 1043167 to J.W.C.W.; 0944730 to S.B.R.; 0230396, 0440817, 0944348 and 0944266 to K.C.T.; 0096305, 9316564, 0096299, 0424589, 0439589, 063740, 063650 and 0837883 to P.A.M.; 0838871 to D.P.S.). NCAR is sponsored by the National Science Foundation. We thank A. Orsi, J. Bautista and J. Flaherty.

Author information

Authors and Affiliations

Authors

Contributions

E.J.S., J.W.C.W., S.B.R., P.D.N., B.R.M., B.H.V., D.P.S., S.W.S., T.A.N., P.A.M., K.C.T., T.J.F., D.A.D. and E.K. conducted fieldwork and sample collection. P.D.N., A.J.S., R.P.T., B.H.V., E.K., E.J.S., D.P.S., J.W.C.W., S.B.R., L.B. and J.W. obtained the ice-core water-isotope data. G.H. provided code and assistance with the modelling. E.J.S. and Q.D. compiled the data, conducted the model experiments and calculations and wrote the paper. All authors contributed to the final manuscript text.

Corresponding authors

Correspondence to Eric J. Steig, Peter D. Neff or Ailie J. E. Gallant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steig, E., Ding, Q., White, J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geosci 6, 372–375 (2013). https://doi.org/10.1038/ngeo1778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing