Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth

Abstract

Microbes control the decomposition of organic matter inmarine sediments. Decomposition, in turn, contributes to oceanic nutrient regeneration and influences the preservation of organic carbon1. Generally, rates of benthic decomposition decline with increasing water depth, although given the vast extent of the abyss, deep-sea sediments are quantitatively important for the global carbon cycle2,3. However, the deepest regions of the ocean have remained virtually unexplored4. Here, we present observations of microbial activity in sediments at Challenger Deep in the Mariana Trench in the central west Pacific, which at almost 11,000 m depth represents the deepest oceanic site on Earth. We used an autonomous micro-profiling system to assess benthic oxygen consumption rates. We show that although the presence of macrofauna is restricted at Challenger Deep, rates of biological consumption of oxygen are high, exceeding rates at a nearby 6,000-m-deep site by a factor of two. Consistently, analyses of sediments collected from the two sites reveal higher concentrations of microbial cells at Challenger Deep. Furthermore, analyses of sediment 210Pb profiles reveal relatively high sediment deposition in the trench. We conclude that the elevated deposition of organic matter at Challenger Deep maintains intensified microbial activity at the extreme pressures that characterize this environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photos of the sediment surface at the two sites.
Figure 2: Benthic O2 distribution measured in situ at the two sites.
Figure 3: Sediment characteristics at the two sites.

Similar content being viewed by others

References

  1. Canfield, D. E. in Interactions Of C,N,P, And S Biogeochemical Cycles And Global Change (eds Wollast, R., F., Mackenzie, T. & Chou, L.) 333–363 (Springer, 1993).

    Book  Google Scholar 

  2. Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).

    Article  Google Scholar 

  3. Burdige, D. J. Geochemistry of Marine Sediments (Princeton Univ. Press,.

  4. Jamieson, A. J. Ecology of deep oceans: Hadal trenches eLS http://dx.doi.org/10.1002/9780470015902.a0023606 (Wiley, 2011).

  5. Taira, K., Kitagawa, S., Yamashiro, T. & Yanagimoto, D. Deep and bottom currents in the challenger deep, measured with super-deep current meters. J. Oceanogr. 60, 919–926 (2004).

    Article  Google Scholar 

  6. Somero, G. N. Adaptations to high hydrostatic pressure. Annul. Rev. Physiol. 54, 557–577 (1992).

    Article  Google Scholar 

  7. DeLong, E. F., Franks, D. G. & Yayanos, A. A. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microb. 63, 2105–2108 (1997).

    Google Scholar 

  8. Todo, Y., Kitazato, H., Hashimoto, J. & Gooday, A. J. Simple Foraminifera flourish at the oceans deepest point. Science 307, 689–690 (2005).

    Article  Google Scholar 

  9. Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Prog. Oceanogr. 76, 217–285 (2008).

    Article  Google Scholar 

  10. Jørgensen, B. B. & Boetius, A. Feast and famine—microbial life in the deep sea bed. Nature Rev. 5, 770–781 (2007).

    Google Scholar 

  11. Fabiano, M. et al. Fluxes of phytopigments and labile organic matter to the deep ocean in the NE Atlantic Ocean. Prog. Oceanogr. 50, 89–104 (2001).

    Article  Google Scholar 

  12. Danovaro, R., Croce, N. D., Dell’Anno, A. & Pusceddu, A. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep-Sea Res. I 50, 1411–1420 (2003).

    Article  Google Scholar 

  13. Jumars, P. A. & Hessler, R. R. Hadal community structure: Implications from the Aleutian Trench. J. Mar. Res. 34, 547–560 (1976).

    Google Scholar 

  14. Glud, R. N., Gundersen, J. K. & Holby, O. Benthic in situ respiration in the upwelling area off central Chile. Mar. Ecol. Prog. Ser. 186, 9–18 (1999).

    Article  Google Scholar 

  15. Hall, P. O. J. et al. Dissolved organic matter in abyssal sediments; core recovery artefacts. Limnol. Oceanogr. 52, 19–31 (2007).

    Article  Google Scholar 

  16. Glud, R. N. et al. In situ microscale variation in distribution and consumption of O2: A case study from a deep ocean margin sediment. Limnol. Oceanogr. 54, 1–12 (2009).

    Article  Google Scholar 

  17. Murashima, T. et al. 11,000 m class Free Fall Mooring System. Oceans 2009-Europe, 1–5 (2009).

  18. Reimers, C. E. An in situ microprofiling instrument for measuring interfacial pore water gradients: Methods and oxygen profiles from the North Pacific Ocean. Deep-Sea Res. 34, 2019–2035 (1987).

    Article  Google Scholar 

  19. Stephens, M. P., Kadko, D. C., Smith, C. R. & Latasa, M. Chlorophyll a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor. Geochim. Comochim. Acta. 61, 4606–4619 (1997).

    Article  Google Scholar 

  20. Wei, C. L. & Rowe, G. T. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS One 5, 1–15 (2010).

    Google Scholar 

  21. Itou, M., Matsumura, I. & Noriki, S. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep-Sea Res. I 47, 1987–1998 (2000).

    Article  Google Scholar 

  22. Andersson, H. J. et al. Respiration patterns in the deep ocean. Geophys. Res. Lett. 31, L03304 (2004).

    Article  Google Scholar 

  23. Revsbech, N. P. An oxygen microelectrode with a guard cathode. Limnol. Oceanogr. 34, 474–478 (1989).

    Article  Google Scholar 

  24. Ullmann, W. J. & Aller, R. C. Diffusion coefficients in near shore marine sediments. Limnol. Oceanogr. 27, 552–557 (1982).

    Article  Google Scholar 

  25. Verardo, D. F., Froelich, P. N. & McIntyre, A. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep-Sea Res. 37, 157–165 (1990).

    Article  Google Scholar 

  26. Shuman, F. R. & Lorenzen, C. F. Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20, 580–586 (1975).

    Article  Google Scholar 

  27. Danovaro, R. & Middelboe, M. in Manual Of Aquatic Viral Ecology (eds Wilhelm, S. W., Weinbauer, M. G. & Suttle, C. A.) 74–81 (ASLO, 2010).

    Book  Google Scholar 

  28. Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleoid acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank A. Glud, R. Abell, T. Brand, B. Christensen, J. P. Meyer, J. Hansen, M. Alisch and T. Sakamoto for excellent technical assistance as well as T. Toyofuku for administrative organization. Further, we wish to thank the Captain and crew of R/V Yokosuka (YK10-16). The study was financially supported by JAMSTEC, the Natural Environment Research Council (NERC, NE/F018612/1; NE/F0122991/1, NE/G006415/1), the commission for Scientific Research in Greenland (KVUG; GCRC6507), ERC through an Advanced Grant (ERC-2010-AdG20100224), the Danish National Research Foundation (DNRF53), The Max Planck Society, The Danish Council for Independent Research (FNU-09-072829), The DFG Research Center MARUM, and Grants-in-Aid for Scientific Research (21244079) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. E. Epping and J. Kallmeyer provided constructive comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.N.G. and D.E.C. wrote the manuscript. R.N.G., F.W., M.M., K.O. and R.T. carried out the measurements, and performed the analytical work and the theoretical analyses. H.K., K.O., R.N.G., F.W. and M.M. helped organize and realize the expedition. All authors discussed the results and their implications and commented on the manuscript as it progressed.

Corresponding author

Correspondence to Ronnie N. Glud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glud, R., Wenzhöfer, F., Middelboe, M. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nature Geosci 6, 284–288 (2013). https://doi.org/10.1038/ngeo1773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1773

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology