Influence of persistent wind scour on the surface mass balance of Antarctica

Abstract

Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records1,2. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (≤200 km2) with reduced surface accumulation3,4,5,6,7. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones3. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that 2.7–6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11–36.5 Gt yr−1 in present surface-mass-balance calculations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Distribution of unconformable internal layers and surface morphology over Dome A.
Figure 2: Slope and atmospheric parameter thresholds for formation of wind-scour zones over Dome A.
Figure 3: Continent-wide prediction of wind-scour zones using the C2 threshold.
Figure 4: Wind-scour zones using C1 and C2 thresholds and comparison with satellite-based observations of surface glaze.

References

  1. 1

    Frezzotti, M. et al. Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J. Glaciol. 51, 113–124 (2005).

    Article  Google Scholar 

  2. 2

    Arthern, R. J., Winebrenner, D. P. & Vaughn, D. G. Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J. Geophys. Res. 111, D06107 (2006).

    Article  Google Scholar 

  3. 3

    Scambos, T. A. et al. Extent of low-accumulation ‘wind glaze’ areas on the East Antarctic plateau: Implications for continental ice mass balance. J. Glaciol. 58, 633–647 (2012).

    Article  Google Scholar 

  4. 4

    Frezzotti, M. et al. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim. Dynam. 23, 803–813 (2004).

    Article  Google Scholar 

  5. 5

    Scarchilli, C. et al. Extraordinary blowing snow transport events in East Antarctica. Clim. Dynam. 34, 1195–1206 (2010).

    Article  Google Scholar 

  6. 6

    Siegert, M. J., Hindmarsh, R. C. A. & Hamilton, G. S. Evidence of a large surface ablation zone in central East Antarctica during the last Ice Age. Quat. Res. 59, 114–121 (2003).

    Article  Google Scholar 

  7. 7

    Jiahong, W. et al. Accumulation variability and mass budgets of the Lambert Glacier-Amery Ice Shelf system, East Antarctica at high elevations. Ann. Glaciol. 43, 351–360 (2006).

    Article  Google Scholar 

  8. 8

    Parish, T. R. & Bromwich, D. H. The surface windfield over the Antarctic ice sheets. Nature 328, 51–54 (1987).

    Article  Google Scholar 

  9. 9

    Watanabe, O. Distribution of surface features of snow cover in Mizuho Plateau. National Institute of Polar Research. Mem. Natl Inst. Pol. Res. 7 (Special issue), 44–62 (1978-01) 1977.

    Google Scholar 

  10. 10

    Furukawa, T., Kamiyama, K. & Maeno, H. in Proc. NIPR Symp. Polar Meteorol. Glaciol. Vol. 10, 13–24 (1996).

    Google Scholar 

  11. 11

    Richardson, C., Aarholt, E., Hamran, S. E., Holmlund, P. & Isaksson, E. Spatial distribution of snow in western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. J. Geophys. Res. 102, 20343–20353 (1997).

    Article  Google Scholar 

  12. 12

    Frezzotti, M., Urbini, S., Proposito, M., Scarchilli, C. & Gandolfi, S. Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J. Geophys. Res. 112, F02032 (2007).

    Article  Google Scholar 

  13. 13

    Frezzotti, M., Gandolfi, S. & Urbini, S. Snow megadunes in Antarctica: Sedimentary structures and genesis. J. Geophys. Res. 107, 4344 (2002).

    Article  Google Scholar 

  14. 14

    Arcone, S. A., Jacobel, R. & Hamilton, G. Unconformable stratigraphy in East Antarctica: Part 1. Large firn cosets, recrystallized growth, and model evidence for intensified accumulation. J. Glaciol. 58, 240–252 (2012).

    Article  Google Scholar 

  15. 15

    Courville, Z., Albert, M., Fahnestock, M., Cathles, L. & Shuman, C. Impacts of an accumulation hiatus on the physical properties of firn at a low-accumulation polar site. J. Geophys. Res. 112, F02030 (2007).

    Article  Google Scholar 

  16. 16

    Shuman, C. A. & Alley, R. B. Spatial and temporal characterizations of hoar formation in central Greenland using SSM/I brightness temperatures. Geophys. Res. Lett. 20, 2643–2646 (1993).

    Article  Google Scholar 

  17. 17

    Bell, R. E. et al. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science 331, 1592–1595 (2011).

    Article  Google Scholar 

  18. 18

    Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E. & Kuipers Munneke, P. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett. 39, L04501 (2012).

    Article  Google Scholar 

  19. 19

    Lenaerts, J. T. M. et al. Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res. 117, D05108 (2012).

    Google Scholar 

  20. 20

    Bamber, J. L., Gomez-Dans, J. L. & Griggs, J. A. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data—Part 1: Data and methods. The Cryosphere 3, 101–111 (2009).

    Article  Google Scholar 

  21. 21

    Spikes, V. B., Hamilton, G. S., Arcone, S. A., Kaspari, S. & Mayewski, P. A. Variability in accumulation rates from GPR profiling on the West Antarctic plateau. Ann. Glaciol. 39, 238–244 (2004).

    Article  Google Scholar 

  22. 22

    Palm, S. P., Yang, Y., Spinhirne, J. D. & Marshak, A. Satellite remote sensing of blowing snow properties over Antarctica. J. Geophys. Res. 116, D16123 (2011).

    Article  Google Scholar 

  23. 23

    Whillans, I. M. Effect of inversion winds on topographic detail and mass balance of inland icesheets. J. Glaciol. 14, 85–90 (1975).

    Article  Google Scholar 

  24. 24

    Black, H. P. & Budd, W. Accumulation in the region of Wilkes, Wilkes Land, Antarctica. J. Glaciol. 5, 3–15 (1964).

    Article  Google Scholar 

  25. 25

    Winther, J-G., Jespersen, M. N. & Liston, G. E. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J. Glaciol. 47, 325–334 (2001).

    Article  Google Scholar 

  26. 26

    Rignot, et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nature Geosci. 1, 106–110 (2008).

    Article  Google Scholar 

  27. 27

    Stearns, L. A. Dynamics and mass balance of four large East Antarctic outlet glaciers. Ann. Glaciol. 52, 116–126 (2011).

    Article  Google Scholar 

  28. 28

    Chen, J. L., Wilson, C. R., Blankenship, D. & Tapley, B. D. Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geosci. 2, 859–862 (2009).

    Article  Google Scholar 

  29. 29

    van der Veen, C. J., Ahn, Y., Csatho, B. M., Mosley-Thompson, E. & Krabill, W. B. Surface roughness over the northern half of Greenland Ice Sheet from airborne laser altimetry. J. Geophys. Res. 114, F01001 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by AGAP-NSF 0632292 (R.E.B., T.T.C., I.D., M.W.), RL-NSF 0636883 (R.E.B., I.D.), IceBridge-NASA NNNX11AC22G (R.E.B.), NSF-OPP 0538103 (T.A.S.) and NASA-NNX10AL42G (T.A.S.). We thank R. Hock, C. Shuman and R. Buck for early reviews of the paper. S. Arcone is acknowledged for helpful discussions. T. Haran, A. Block and H. Abdi are acknowledged for their help in data processing and GIS (geographic information system) support.

Author information

Affiliations

Authors

Contributions

I.D. processed and analysed the lidar data set, interpreted the radar data set, developed the prediction model and wrote the paper. R.E.B. oversaw the field campaign, interpreted the radar data and developed the paper. T.A.S. analysed the atmospheric parameters, provided wind-glaze data and assisted in developing the methodology and the paper. M.W. processed and analysed the radar data set and contributed to velocity modelling. T.T.C. interpreted the radar data set, assisted in methodology and developed the paper. M.S. developed the lidar system, processing software and contributed to lidar data processing. N.F. developed the radars and contributed to the processing techniques. J.P.N. helped with interpreting the atmospheric parameters and developed the paper. J.T.M.L. and M.R.v.d.B. provided the RACMO2 and blue ice data set and assisted in interpreting the results. All authors commented on the manuscript.

Corresponding author

Correspondence to Indrani Das.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1572 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Das, I., Bell, R., Scambos, T. et al. Influence of persistent wind scour on the surface mass balance of Antarctica. Nature Geosci 6, 367–371 (2013). https://doi.org/10.1038/ngeo1766

Download citation

Further reading