Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter

Abstract

Nearly 75 years ago, Alfred C. Redfield observed a similarity between the elemental composition of marine plankton in the surface ocean and dissolved nutrients in the ocean interior1. This stoichiometry, referred to as the Redfield ratio, continues to be a central tenet in ocean biogeochemistry, and is used to infer a variety of ecosystem processes, such as phytoplankton productivity and rates of nitrogen fixation and loss2,3,4. Model, field and laboratory studies have shown that different mechanisms can explain both constant and variable ratios of carbon to nitrogen and phosphorus among ocean plankton communities. The range of C/N/P ratios in the ocean, and their predictability, are the subject of much active research5,6,7,8,9,10,11,12. Here we assess global patterns in the elemental composition of phytoplankton and particulate organic matter in the upper ocean, using published and unpublished observations of particulate phosphorus, nitrogen and carbon from a broad latitudinal range, supplemented with elemental data for surface plankton populations. We show that the elemental ratios of marine organic matter exhibit large spatial variations, with a global average that differs substantially from the canonical Redfield ratio. However, elemental ratios exhibit a clear latitudinal trend. Specifically, we observed a ratio of 195:28:1 in the warm nutrient-depleted low-latitude gyres, 137:18:1 in warm, nutrient-rich upwelling zones, and 78:13:1 in cold, nutrient-rich high-latitude regions. We suggest that the coupling between oceanic carbon, nitrogen and phosphorus cycles may vary systematically by ecosystem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Elemental stoichiometry of marine environments.
Figure 3: Elemental stoichiometry of different taxa from natural North Atlantic Ocean plankton communities.

Similar content being viewed by others

References

  1. Redfield, A. James Johnstone Memorial Volume 176–192 (Liverpool Univ. Press, 1934).

    Google Scholar 

  2. Tyrrell, T. The relative influence of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–527 (1999).

    Article  Google Scholar 

  3. Mills, M. & Arrigo, K. Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton. Nature Geosci. 3, 412–416 (2010).

    Article  Google Scholar 

  4. Lenton, T. & Klausmeier, C. A. Biotic stoichiometric controls on the deep ocean N:P ratio. Biogeosciences 4, 353–367 (2007).

    Article  Google Scholar 

  5. Geider, R. J. & LaRoche, J. Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).

    Article  Google Scholar 

  6. Bertilsson, S., Berglund, O., Karl, D. M. & Chisholm, S. W. Elemental composition of marine Prochlorococcus and Synechococcus : Implications for the ecological stoichiometry of the sea. Limnol. Oceanogr. 48, 1721–1731 (2003).

    Article  Google Scholar 

  7. Ho, T. et al. The elemental composition of some marine phytoplankton. J. Phycol. 39, 1145–1159 (2003).

    Article  Google Scholar 

  8. Karl, D., Bidigare, R. & Letelier, R. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis. Deep-Sea Res. II 48, 1449–1470 (2001).

    Article  Google Scholar 

  9. Arrigo, K. et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283, 35–367 (1999).

    Article  Google Scholar 

  10. Lomas, M. W. et al. Sargasso Sea phosphorus biogeochemistry: An important role for dissolved organic phosphorus (DOP). Biogeosciences 7, 695–710 (2010).

    Article  Google Scholar 

  11. Weber, T. & Deutsch, C. Ocean nutrient ratios governed by plankton biogeography. Nature 467, 550–554 (2010).

    Article  Google Scholar 

  12. Weber, T. & Deutsch, C. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation. Nature 419, 419–424 (2012).

    Article  Google Scholar 

  13. Loladze, I. & Elser, J. The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecol. Lett. 14, 244–250 (2011).

    Article  Google Scholar 

  14. Deutsch, C. & Weber, T. in Annual Review of Marine Science Vol. 4 (eds Carlson, C. A. & Giovannoni, S. J.) http://dx.doi.org/10.1146/annurev-marine-120709-142821 (Annual Reviews, 2012).

  15. Price, N. Elemental stoichiometry and composition of an iron-limited diatom. Limnol. Oceanogr. 50, 1159–1171 (2005).

    Article  Google Scholar 

  16. Twining, B., Baines, S. & Fisher, N. S. Elemental stoichiometries of individual plankton collected during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 49, 2115–2128 (2004).

    Article  Google Scholar 

  17. Rhee, G. Effect of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23, 10–25 (1978).

    Article  Google Scholar 

  18. Elser, J. et al. Growth rate-stoichiometry couplings in divers biota. Ecol. Lett. 6, 936–943 (2003).

    Article  Google Scholar 

  19. Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).

    Article  Google Scholar 

  20. Jackson, G. & Williams, P. Importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling. Deep-Sea Res. I 32, 223–235 (1985).

    Article  Google Scholar 

  21. Verity, P., Williams, S. & Hong, Y. Formation, degradation and mass:volume ratios of detritus derived from decaying phytoplankton. Mar. Ecol. Prog. Ser. 207, 53–68 (2000).

    Article  Google Scholar 

  22. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

    Article  Google Scholar 

  23. Bidigare, R. et al. Subtropical ocean ecosystem structure changes forced by North Pacific climate variations. J. Plankton Res. 31, 1131–1139 (2009).

    Article  Google Scholar 

  24. Wright, S. W. & Jeffrey, S. W. Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Mar. Ecol. Prog. Ser. 38, 259–266 (1987).

    Article  Google Scholar 

  25. Sterner, R. et al. Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnol. Oceanogr. 53, 1169–1180 (2008).

    Article  Google Scholar 

  26. Heldal, M., Scanlan, D., Norland, S., Thingstad, T. & Mann, N. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol. Oceanogr. 48, 1732–1743 (2003).

    Article  Google Scholar 

  27. Locarnini, R. et al. World Ocean 2009, Vol. 1, Temperature, 184pp (ed NOAA Atlas NESDIS 68, US Government Printing Office, 2010).

  28. Figueiredo, M. & Jain, A. Unsupervised learning of finite mixture models. Pattern Anal. Mach. Intel. 24, 381–393 (2002).

    Article  Google Scholar 

  29. Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): A decade-scale look at ocean biology and biogeochemistry. Deep-Sea Res. II 48, 1405–1447 (2001).

    Article  Google Scholar 

  30. Casey, J., Lomas, M. W., Mandecki, J. & Walker, D. Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys. Res. Lett. 34, L10604 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Allison, C. Klausmeier, E. Litchman and J. Martiny for their comments. The National Science Foundation Dimensions of Biodiversity (A.C.M., M.W.L. and S.A.L.), Biological Oceanography programs (A.C.M. and M.W.L.), Department of Energy Biological and Environmental Research Climate and Environmental Sciences Division (J.K.M. and F.W.P.), and UCI Environment Institute (A.C.M. and J.A.V.) provided financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the analysis and interpretation of results. M.W.L. collected the newly presented cruise data and taxon-specific plankton elemental data. A.C.M. and M.W.L. designed the study and wrote the paper.

Corresponding author

Correspondence to Michael W. Lomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1049 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martiny, A., Pham, C., Primeau, F. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geosci 6, 279–283 (2013). https://doi.org/10.1038/ngeo1757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1757

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology