Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone

Abstract

Oxygen minimum zones are expanding globally, and at present account for around 20–40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox—anaerobic ammonium oxidation with nitrite—are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here, we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen minimum zones.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps of sampling locations and nutrient distributions in the ETSP OMZ.
Figure 2: Depth-integrated N-cycling rates in the ETSP OMZ.
Figure 3: N fluxes and nutrient inventory of the ETSP OMZ.

Similar content being viewed by others

References

  1. Kamykowski, D. & Zentara, S. Hypoxia in the world ocean as recorded in the historical data set. Deep-Sea Res. 37, 1861–1874 (1990).

    Article  Google Scholar 

  2. Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Progr. Oceanogr. 77, 331–350 (2008).

    Article  Google Scholar 

  3. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article  Google Scholar 

  4. Stramma, L. et al. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    Article  Google Scholar 

  5. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 463–493 (2009).

  6. Lam, P. & Kuypers, M. M. Microbial nitrogen cycling processes in oxygen minimum zones. Annu. Rev. Mar. Sci. 3, 317–347 (2011).

    Article  Google Scholar 

  7. Gruber, N. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 . NATO ASI Ser. 97–148 (2004).

  8. Deutsch, C. et al. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    Article  Google Scholar 

  9. Moore, J.K. & Doney, S.C. Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Glob. Biogeochem. Cycles 21, GB2001 (2007).

    Article  Google Scholar 

  10. Schmittner, A. et al. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob. Biogeochem. Cycles 22, GB1013 (2008).

    Article  Google Scholar 

  11. Somes, C. J. et al. Simulating the global distribution of nitrogen isotopes in the ocean. Glob. Biogeochem. Cycles 24, GB4019 (2010).

    Article  Google Scholar 

  12. Kuypers, M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA 102, 6478–6483 (2005).

    Article  Google Scholar 

  13. Hamersley, M. R. et al. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr. 52, 923–933 (2007).

    Article  Google Scholar 

  14. Jensen, M. M. et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 5, 1660–1670 (2011).

    Article  Google Scholar 

  15. Lam, P. et al. Origin and fate of the secondary nitrite maximum in the Arabian Sea. Biogeosciences 8, 1565–1577 (2011).

    Article  Google Scholar 

  16. Bohlen, L. et al. Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone. Geoch. Cosmochem. Acta 75, 6094–6111 (2011).

    Article  Google Scholar 

  17. Cline, J. D. & Richards, F. A. Oxygen deficient conditions and nitrate reduction in the eastern tropical North Pacific Ocean. Limnol. Oceanogr. 17, 885–900 (1972).

    Article  Google Scholar 

  18. Codispoti, L. A. & Packard, T. T. Denitrification rates in the eastern tropical south-pacific. J. Mar. Res. 38, 453–477 (1980).

    Google Scholar 

  19. Naqvi, S. W. Some aspects of the oxygen-deficient conditions and denitrification in the Arabian Sea. J. Mar. Res. 45, 1049–1072 (1987).

    Article  Google Scholar 

  20. Thamdrup, B. et al. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr. 51, 2145–2156 (2006).

    Article  Google Scholar 

  21. Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. USA 106, 4752–4757 (2009).

    Article  Google Scholar 

  22. Füssel, J. et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 6, 1200–1209 (2012).

    Article  Google Scholar 

  23. Lipschultz, F. et al. Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the Eastern Tropical South Pacific Ocean. Deep-Sea Res. 37, 1513–1541 (1990).

    Article  Google Scholar 

  24. Kalvelage, T. et al. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones. PLoS ONE 6, e29299 (2011).

    Article  Google Scholar 

  25. Fuenzalida, R. et al. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep-Sea Res. II 56, 992–1003 (2009).

    Article  Google Scholar 

  26. Codispoti, L. A. & Christensen, J. P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean. Mar. Chem. 16, 277–300 (1985).

    Article  Google Scholar 

  27. Wooster, W. S., Chow, T. J. & Barrett, I. Nitrite distribution in Peru current waters. J. Mar. Res. 23, 210–221 (1965).

    Google Scholar 

  28. Nelson, S. S. & Neshyba, S. On the southernmost extension of the Peru–Chile Undercurrent. Deep-Sea Res. 26A, 1387–1393 (1979).

    Google Scholar 

  29. Ward, B. B., Glover, H. E. & Lipschultz, F. Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru. Deep-Sea Res. 36, 1031–1051 (1989).

    Article  Google Scholar 

  30. Fernández, C., Farı´as, L. & Alcaman, M. E. Primary production and nitrogen regeneration processes in surface waters of the Peruvian upwelling system. Progr. Oceanogr. 83, 159–168 (2009).

    Article  Google Scholar 

  31. Anderson, J. J. et al. A model for nitrite and nitrate distributions in oceanic oxygen minimum zones. Deep-Sea Res. 29, 1113–1140 (1982).

    Article  Google Scholar 

  32. Lavik, G. et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457, 581–584 (2008).

    Article  Google Scholar 

  33. Dalsgaard, T. et al. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).

    Article  Google Scholar 

  34. Ward, B. B. et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461, 78–81 (2009).

    Article  Google Scholar 

  35. Deutsch, C. et al. Denitrification and N2 fixation in the Pacific Ocean. Glob. Biogeochem. Cycles 15, 483–506 (2001).

    Article  Google Scholar 

  36. Dalsgaard, T. et al. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608 (2003).

    Article  Google Scholar 

  37. Van Mooy, B. A., Keil, R. G. & Devol, A. H. Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification. Geochem. Cosmochem. Acta 66, 457–465 (2002).

    Article  Google Scholar 

  38. Canfield, D. E. et al. A cryptic sulphur cycle in oxygen-minimum zone waters off the Chilean coast. Science 330, 1375–1378 (2010).

    Article  Google Scholar 

  39. Revsbech, N. P. et al. Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnol. Oceanogr. 7, 371–381 (2009).

    Article  Google Scholar 

  40. Thamdrup, B., Dalsgaard, T. & Revsbech, N. P. Widespread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep-Sea Res. I 65, 36–45 (2012).

    Article  Google Scholar 

  41. Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5, e10330 (2010).

    Article  Google Scholar 

  42. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    Article  Google Scholar 

  43. Laws, E. A. et al. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).

    Article  Google Scholar 

  44. Pennington, J. T. et al. Primary production in the eastern tropical Pacific: A review. Progr. Oceanogr. 69, 285–317 (2006).

    Article  Google Scholar 

  45. Grasshoff, K. et al. Methods of Seawater Analysis (Wiley, 1999).

    Book  Google Scholar 

  46. Holmes, R. M. et al. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56, 1801–1808 (1999).

    Article  Google Scholar 

  47. Gruber, N. & Sarmiento, J. L. Global Patterns of Marine Nitrogen Fixation and Denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    Article  Google Scholar 

  48. Holtappels, M. et al. 15N-labelling experiments to dissect the contributions of heterotrophic denitrification and anammox to nitrogen removal in the OMZ waters of the ocean. Methods Enzymol. 486, 223–251 (2011).

    Article  Google Scholar 

  49. Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).

    Article  Google Scholar 

  50. Loescher, C. R. et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosc. Disc. 9, 2095–2122 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the Peruvian government for access to their territorial waters. We sincerely thank the cruise leader M. Frank as well as the crews of the cruises M77-3 and 4 onboard R/V Meteor for their support at sea. We are grateful for the technical and analytical assistance of G. Klockgether, I. Boosmann, V. Leon, I. Grefe and A. Ellrott. We thank N. P. Revsbech, who generously provided the STOX sensors, and T. Ferdelmann for offering valuable comments to improve the article. This study was supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 754 ‘Climate-Biogeochemistry Interactions in the Tropical Ocean’ and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

T.K., G.L. and M.M.M.K. designed the study. T.K., G.L., S.C. and A.P. performed 15N-labelling experiments. T.K., G.L. and P.L. analysed the data. C.R.L. carried out functional gene analyses. L.A. and A.O. modelled export production rates. L.S. provided CTD and ADCP data. T.K., G.L., P.L. and M.M.M.K. wrote the manuscript with input from all co-authors..

Corresponding authors

Correspondence to Sergio Contreras, Aurélien Paulmier or Marcel M. M. Kuypers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 9139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalvelage, T., Lavik, G., Lam, P. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geosci 6, 228–234 (2013). https://doi.org/10.1038/ngeo1739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing