Abstract
The Laccadive–Chagos Ridge and Southern Mascarene Plateau in the north-central and western Indian Ocean, respectively, are thought to be volcanic chains formed above the Réunion mantle plume1 over the past 65.5 million years2,3. Here we use U–Pb dating to analyse the ages of zircon xenocrysts found within young lavas on the island of Mauritius, part of the Southern Mascarene Plateau. We find that the zircons are either Palaeoproterozoic (more than 1,971 million years old) or Neoproterozoic (between 660 and 840 million years old). We propose that the zircons were assimilated from ancient fragments of continental lithosphere beneath Mauritius, and were brought to the surface by plume-related lavas. We use gravity data inversion to map crustal thickness and find that Mauritius forms part of a contiguous block of anomalously thick crust that extends in an arc northwards to the Seychelles. Using plate tectonic reconstructions, we show that Mauritius and the adjacent Mascarene Plateau may overlie a Precambrian microcontinent that we call Mauritia. On the basis of reinterpretation of marine geophysical data4, we propose that Mauritia was separated from Madagascar and fragmented into a ribbon-like configuration by a series of mid-ocean ridge jumps during the opening of the Mascarene ocean basin between 83.5 and 61 million years ago. We suggest that the plume-related magmatic deposits have since covered Mauritia and potentially other continental fragments.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hotspot tracks: Plume heads and tails. Science 146, 103–107 (1989).
Duncan, R. A. in Proc. Ocean Drilling Program Scientific Results Vol. 115 (eds Duncan, R. A., Backman, J. & Peterson, L. C.) 3–10 (1990).
Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspot in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).
National Geophysical Data Center, National Oceanic and Atmospheric Administration, US Department of Commerce, http://www.ngdc.noaa.gov/mgg/.
Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. C. & Ashwal, L. D. Diamonds sourced by plumes from the core mantle boundary. Nature 466, 352–355 (2010).
Vlastelic, I., Lewin, E. & Staudacher, T. Th/U and other geochemical evidence for the Réunion plume sampling a less differentiated mantle domain. Earth Planet. Sci. Lett. 248, 379–393 (2006).
McDougall, I. & Chamalaun, F. H. Isotopic dating and geomagnetic polarity studies on volcanic rocks from Mauritius, Indian Ocean. Geol. Soc. Am. Bull. 80, 1419–1442 (1969).
Moore, J. et al. Evolution of shield-building and rejuvenescent volcanism of Mauritius. J. Volc. Geothermal Res. 207, 47–66 (2011).
Paul, D., White, W. M. & Blichert-Toft, J. Geochemistry of Mauritius and the origin of rejuvenescent volcanism on oceanic island volcanoes. Geochem. Geophys. Geosyst. 6, Q06007 (2005).
Paul, D., Kamenetsky, V. S., Hofmann, A. W. & Stracke, A. Compositional diversity among primitive lavas of Mauritius, Indian Ocean: Implications for mantle sources. J. Volc. Geothermal Res. 164, 76–94 (2007).
Grimes, C. B. et al. Trace element chemistry of zircon from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 7, 643–646 (2007).
Simonetti, A. & Neal, C. R. In-situ chemical, U–Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): Evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau. Earth Planet. Sci. Lett. 295, 251–261 (2010).
Pilot, J., Werner, C. D., Haubrich, F. & Baumann, N. Paleozoic and Proterozoic zircons from the Mid-Atlantic Ridge. Nature 393, 676–679 (1998).
Greenhalgh, E. E. & Kusznir, N. J. Evidence for thin oceanic crust on the extinct Aegir Ridge, Norwegian Basin, NE Atlantic derived from satellite gravity inversion. Geophys. Res. Lett. 34, L06305 (2007).
Collier, J. S. et al. Factors influencing magmatism during continental breakup: New insights from a wide-angle seismic experiment across the conjugate Seychelles-Indian margins. J. Geophys. Res. 114, B03101 (2009).
Chaubey, A. K. et al. Analyses of multichannel seismic reflection, gravity and magnetic data along a regional profile across the central-western continental margin of India. Marine Geol. 182, 303–323 (2001).
Henstock, T. J. & Thompson, P. J. Self-consistent modelling of crustal thickness at Chagos-Laccadive ridge from bathymetry and gravity data. Earth Planet. Sci. Lett. 224, 325–336 (2004).
Collins, A. S. & Windley, B. F. The tectonic evolution of Central and Northern Madagascar and its place in the final assembly of Gondwana. J. Geol. 110, 325–339 (2002).
Ashwal, L. D., Demaiffe, D. & Torsvik, T. H. Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: Evidence for an Andean arc origin. J. Petrol. 43, 45–83 (2002).
Collins, A. S., Kinny, P. D. & Razakamanana, T. Depositional age, provenance and metamorphic age of metasedimentary rocks from southern Madagascar. Gondwana Res. 21, 353–361 (2012).
Storey, M. et al. Timing of hot spot-related volcanism and the break-up of Madagascar and India. Science 267, 852–855 (1995).
Torsvik, T. H. et al. Late Cretaceous India-Madagascar fit and timing of break-up related magmatism. Terra Nova 12, 220–225 (2000).
Collier, J. S. et al. Age of Seychelles-India break-up. Earth Planet. Sci. Lett. 272, 264–277 (2008).
Ganerød, M. et al. in The Formation and Evolution of Africa: A Synopsis of 3.8 Gyr of Earth History Vol. 357 (eds Van Hinsbergen, D. J. J., Buiter, S. J. H., Torsvik, T. H., Gaina, C. & Webb, S. J.) 229–252 (Geol. Soc. Lond. Spec. Publ., 2011).
Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans. J. Geophys. Res. 117, B09101 (2012).
Lénat, J-F, Merle, O. & Lespagnol, L. La réunion: An example of channeled hot spot plume. J. Volc. Geothermal Res. 184, 1–13 (2009).
Sleep, N. H. Lateral flow and ponding of starting plume material. J. Geophys. Res. 102, 10001–10012 (1997).
White, W. M., Cheatham, M. M. & Duncan, R. A. in Proc. Ocean Drilling Program Scientific Results Vol. 115 (eds Duncan, R. A., Backman, J. & Peterson, L. C.) 53–61 (1990).
Corfu, F. U–Pb age, setting, and tectonic significance of the anorthosite–mangerite–charnockite–granite-suite, Lofoten–Vesterålen, Norway. J. Petrol. 45, 1799–1819 (2004).
Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3, 1003 (2002).
Acknowledgements
We thank E. R. Neuman for discussions, and C. Mac Niocaill for constructive comments. The European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Advanced Grant Agreement Number 267631 (Beyond Plate Tectonics), the Norwegian Research Council (Topo-4D) and the Centre for Advanced Study are acknowledged for financial support.
Author information
Authors and Affiliations
Contributions
T.H.T., H.A. and B.J. developed the conceptual idea for the study, H.A. and E.H. sampled the Mauritius rocks, F.C. dated the samples, N.K. calculated the crustal thickness map, C.G. and T.H.T developed detailed reconstructions, P.D. and B.S. developed global plate motion frames, and L.D.A. and B.J. handled geochemical aspects. All authors contributed to discussions and writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2821 kb)
Rights and permissions
About this article
Cite this article
Torsvik, T., Amundsen, H., Hartz, E. et al. A Precambrian microcontinent in the Indian Ocean. Nature Geosci 6, 223–227 (2013). https://doi.org/10.1038/ngeo1736
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo1736
This article is cited by
-
Neoproterozoic reorganization of the Circum- Mozambique orogens and growth of megacontinent Gondwana
Communications Earth & Environment (2023)
-
New perspectives on late Tethyan Neogene biodiversity development of fishes based on Miocene (~ 17 Ma) otoliths from southwestern India
PalZ (2023)
-
Plume–MOR decoupling and the timing of India–Eurasia collision
Scientific Reports (2022)
-
Mantle plume and rift-related volcanism during the evolution of the Rio Grande Rise
Communications Earth & Environment (2022)
-
Radiation damage allows identification of truly inherited zircon
Communications Earth & Environment (2022)