Abstract
The Moon was thought to be anhydrous since the Apollo era1, but this view has been challenged by detections of water on the lunar surface2,3,4 and in volcanic rocks5,6,7,8,9 and regolith10. Part of this water is thought to have been brought through solar-wind implantation2,3,4,7,10 and meteorite impacts2,3,7,11, long after the primary lunar crust formed from the cooling magma ocean12,13. Here we show that this primary crust of the Moon contains significant amounts of water. We analysed plagioclase grains in lunar anorthosites thought to sample the primary crust, obtained in the Apollo missions, using Fourier-transform infrared spectroscopy, and detected approximately 6 ppm water. We also detected up to 2.7 ppm water in plagioclase grains in troctolites also from the lunar highland upper crust. From these measurements, we estimate that the initial water content of the lunar magma ocean was approximately 320 ppm; water accumulating in the final residuum of the lunar magma ocean could have reached 1.4 wt%, an amount sufficient to explain water contents measured in lunar volcanic rocks. The presence of water in the primary crust implies a more prolonged crystallization of the lunar magma ocean than a dry moon scenario and suggests that water may have played a key role in the genesis of lunar basalts.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Evidence of water on the lunar surface from Chang’E-5 in-situ spectra and returned samples
Nature Communications Open Access 14 June 2022
-
A dry lunar mantle reservoir for young mare basalts of Chang’e-5
Nature Open Access 19 October 2021
-
Water Group Exospheres and Surface Interactions on the Moon, Mercury, and Ceres
Space Science Reviews Open Access 01 September 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Lucey, P. et al. Understanding the lunar surface and space–Moon interactions. Rev. Mineral. Geochem. 60, 83–219 (2006).
Clark, R. N. Detection of adsorbed water and hydroxyl on the Moon. Science 326, 562–564 (2009).
Pieters, C. M. et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009).
Sunshine, J. M. et al. Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326, 565–568 (2009).
Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).
Boyce, J. W. et al. Lunar apatite with terrestrial volatile abundances. Nature 466, 466–469 (2010).
Greenwood, J. P. et al. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature Geosci. 4, 79–82 (2011).
McCubbin, F. M. et al. Nominally hydrous magmatism on the Moon. Proc. Natl Acad. Sci. USA 107, 11223–11228 (2010).
Hauri, E. H., Weinreich, T., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011).
Liu, Y. et al. Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nature Geosci. 5, 779–782 (2012).
Elkins-Tanton, L. T. & Grove, T. L. Water (hydrogen) in the lunar mantle: Results from petrology and magma ocean modelling. Earth Planet. Sci. Lett. 307, 173–179 (2011).
Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).
Norman, M. D., Borg, L. E., Nyquist, L. E. & Bogard, D. D. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: Clues to the age, origin, structure, and impact history of the lunar crust. Meteorol. Planet. Sci. 38, 645–661 (2003).
Asimow, P. D. & Langmuir, C. H. The importance of water to oceanic mantle melting regimes. Nature 421, 815–820 (2003).
Danyushevsky, L. V. The effect of small amounts of H2O on crystallization of mid-ocean ridge and backarc basin magmas. J. Volcanol. Geotherm. Res. 110, 265–280 (2001).
Ochs, F. A. III & Lange, R. A. The density of hydrous magmatic liquids. Science 283, 1314–1317 (1999).
Hui, H. & Zhang, Y. Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim. Cosmochim. Acta 71, 403–416 (2007).
Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).
Sharp, Z. D., Shearer, C. K., McKeegan, K. D., Barnes, J. D. & Wang, Y. Q. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010).
Hess, P. C. Petrogenesis of lunar troctolites. J. Geophys. Res. 99, 19083–19093 (1994).
Keller, L. P. & McKay, D. S. The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61, 2331–2341 (1997).
Johnson, E. A. & Rossman, G. R. The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am. Mineral. 88, 901–911 (2003).
Johnson, E. A. & Rossman, G. R. A survey of hydrous species and concentrations in igneous feldspars. Am. Mineral. 89, 586–600 (2004).
Behrens, H., Romano, C., Nowak, M., Holtz, F. & Dingwell, D. B. Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K): An interlaboratory study. Chem. Geol. 128, 41–63 (1996).
Johnson, E. A. Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance. Rev. Mineral. Geochem. 62, 117–154 (2006).
O’Leary, J. A., Gaetani, G. A. & Hauri, E. H. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet. Sci. Lett. 297, 111–120 (2010).
Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715–734 (2006).
Palme, H. & O’Neill, H. St. C. Cosmochemical estimates of mantle composition. Treatise Geochem. 2, 1–38 (2004).
Spera, F. J. Lunar magma transport phenomena. Geochim. Cosmochim. Acta 56, 2253–2265 (1992).
Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).
Acknowledgements
This work was supported by NASA (NNX11AH48G to H.H. and NNX10AH74G to Y.Z.). We thank the Apollo sample curators for allocating us the samples and G. Rossman for providing an aliquot of plagioclase GRR1968. H.H. thanks Y. Chen for technical assistance on heating experiments and electron microprobe analyses, and D. Draper and the LPI for help to access the JSC facility. This manuscript was greatly improved by the suggestions and comments of E. A. Johnson.
Author information
Authors and Affiliations
Contributions
H.H. conceived this study and performed the analyses and experiments. Y.Z. provided the terrestrial plagioclase grains. A.H.P and Y.Z. assisted in experiments and FTIR analyses. H.H., A.H.P., Y.Z. and C.R.N. discussed the data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2142 kb)
Rights and permissions
About this article
Cite this article
Hui, H., Peslier, A., Zhang, Y. et al. Water in lunar anorthosites and evidence for a wet early Moon. Nature Geosci 6, 177–180 (2013). https://doi.org/10.1038/ngeo1735
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo1735
This article is cited by
-
Evidence of water on the lunar surface from Chang’E-5 in-situ spectra and returned samples
Nature Communications (2022)
-
A dry lunar mantle reservoir for young mare basalts of Chang’e-5
Nature (2021)
-
Hydrogen defects in feldspars: defect properties and implications for water solubility in feldspar
Physics and Chemistry of Minerals (2021)
-
Effect of crustal porosity on lunar magma ocean solidification
Acta Geochimica (2021)
-
Water Group Exospheres and Surface Interactions on the Moon, Mercury, and Ceres
Space Science Reviews (2021)