Central West Antarctica among the most rapidly warming regions on Earth

A Corrigendum to this article was published on 23 December 2013

This article has been updated


There is clear evidence that the West Antarctic Ice Sheet is contributing to sea-level rise. In contrast, West Antarctic temperature changes in recent decades remain uncertain. West Antarctica has probably warmed since the 1950s, but there is disagreement regarding the magnitude, seasonality and spatial extent of this warming. This is primarily because long-term near-surface temperature observations are restricted to Byrd Station in central West Antarctica, a data set with substantial gaps. Here, we present a complete temperature record for Byrd Station, in which observations have been corrected, and gaps have been filled using global reanalysis data and spatial interpolation. The record reveals a linear increase in annual temperature between 1958 and 2010 by 2.4±1.2 °C, establishing central West Antarctica as one of the fastest-warming regions globally. We confirm previous reports of West Antarctic warming, in annual average and in austral spring and winter, but find substantially larger temperature increases. In contrast to previous studies, we report statistically significant warming during austral summer, particularly in December–January, the peak of the melting season. A continued rise in summer temperatures could lead to more frequent and extensive episodes of surface melting of the West Antarctic Ice Sheet. These results argue for a robust long-term meteorological observation network in the region.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Map of Antarctica and annual spatial footprint of the Byrd temperature record.
Figure 2: Temperature time series from the reconstructed Byrd record.
Figure 3: Linear temperature trends at Byrd.
Figure 4: Comparison of the temperature trends at Byrd from several reconstructions.
Figure 5: Relationships between Byrd temperature and the atmospheric circulation during the three warming seasons.

Change history

  • 23 December 2013

    In the version of this Article originally published, some information in Fig. 3a,b and in the Supplementary Information was incorrect. A full explanation of the calculation errors and their corrections, including an updated Fig. 3a,b, can be found in the corresponding Corrigendum.

  • 23 December 2013

    Nature Geoscience 6, 139–145 (2013); published online 23 December 2012; corrected after print 23 December 2013. In our Article presenting a reconstruction of the near-surface temperature record at Byrd Station, a calculation error led to an overestimation of the magnitude and statistical significance of the temperature trends in December–January shown in Fig.


  1. 1

    Rignot, E. Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys. Res. Lett. 35, L12505 (2008).

    Google Scholar 

  2. 2

    King, M. A. et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature http://dx.doi.org/10.1038/nature11621 (2012).

  3. 3

    Joughin, I. & Alley, R. B. Stability of the West Antarctic ice sheet in a warming world. Nature Geosci. 4, 506–513 (2011).

    Article  Google Scholar 

  4. 4

    Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geosci. 4, 519–523 (2011).

    Article  Google Scholar 

  5. 5

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  Google Scholar 

  6. 6

    Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009).

    Article  Google Scholar 

  7. 7

    O’Donnell, R., Lewis, N., McIntyre, S. & Condon, J. Improved methods for PCA-based reconstructions: Case study using the Steig et al. (2009) Antarctic temperature reconstruction. J. Clim. 24, 2099–2115 (2010).

    Article  Google Scholar 

  8. 8

    Schneider, D., Deser, C. & Okumura, Y. An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim. Dynam. 38, 323–347 (2012).

    Article  Google Scholar 

  9. 9

    Tedesco, M. et al. The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett. 6, 014005 (2011).

    Article  Google Scholar 

  10. 10

    Tedesco, M. & Monaghan, A. J. An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability. Geophys. Res. Lett. 36, L18502 (2009).

    Article  Google Scholar 

  11. 11

    Kuipers Munneke, P., Picard, G., van den Broeke, M. R., Lenaerts, J. T. M. & van Meijgaard, E. Insignificant change in Antarctic snowmelt volume since 1979. Geophys. Res. Lett. 39, L01501 (2012).

    Article  Google Scholar 

  12. 12

    Nghiem, S. V., Steffen, K., Neumann, G. & Huff, R. in Dynamic Planet: Monitoring and Understanding a Dynamic Planet With Geodetic and Oceanographic Tools, IAG Symp., Cairns, Australia 22–26 Aug. 2005 (eds Tregoning, P. & Rizos, C.) 31–38 (2005).

    Google Scholar 

  13. 13

    Chapman, W. L. & Walsh, J. E. A synthesis of Antarctic temperatures. J. Clim. 20, 4096–4117 (2007).

    Article  Google Scholar 

  14. 14

    Monaghan, A. J., Bromwich, D. H., Chapman, W. & Comiso, J. C. Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res. 113, D04105 (2008).

    Article  Google Scholar 

  15. 15

    Guo, Z., Bromwich, D. H. & Hines, K. Modeled Antarctic precipitation. Part II: ENSO modulation over West Antarctica. J. Clim. 17, 448–465 (2004).

    Article  Google Scholar 

  16. 16

    Bindschadler, R. The environment and evolution of the West Antarctic ice sheet: Setting the stage. Phil. Trans. R. Soc., Ser. A 364, 1583–1605 (2006).

    Article  Google Scholar 

  17. 17

    Ding, Q., Steig, E. J., Battisti, D. S. & Kuttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci. 4, 398–403 (2011).

    Article  Google Scholar 

  18. 18

    Shuman, C. A. & Stearns, C. R. Decadal-length composite inland West Antarctic temperature records. J. Clim. 14, 1977–1988 (2001).

    Article  Google Scholar 

  19. 19

    Reusch, D. B. & Alley, R. B. A 15-year West Antarctic climatology from six automatic weather station temperature and pressure records. J. Geophys. Res. 109, D04103 (2004).

    Article  Google Scholar 

  20. 20

    Küttel, M., Steig, E. J., Ding, Q., Monaghan, A. J. & Battisti, D. S. Seasonal climate information preserved in West Antarctic ice core water isotopes: Relationships to temperature, large-scale circulation, and sea ice. Clim. Dynam. 39, 1841–1857 (2012).

    Article  Google Scholar 

  21. 21

    Lazzara, M. A., Weidner, G. A., Keller, L. M., Thom, J. E. & Cassano, J. J. Antarctic Automatic Weather Station Program: 30 years of polar observations. Bull. Am. Meteorol. Soc. 93, 1519–1537 (2012).

    Article  Google Scholar 

  22. 22

    Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  23. 23

    Marshall, G. J. Trends in Antarctic geopotential height and temperature: A comparison between radiosonde and NCEP-NCAR reanalysis data. J. Clim. 15, 659–674 (2002).

    Article  Google Scholar 

  24. 24

    Bromwich, D. H. & Fogt, R. L. Strong trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere, 1958-2001. J. Clim. 17, 4603–4619 (2004).

    Article  Google Scholar 

  25. 25

    Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60, 243–274 (2003).

    Article  Google Scholar 

  26. 26

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  27. 27

    Johanson, C. M. & Fu, Q. Antarctic atmospheric temperature trend patterns from satellite observations. Geophys. Res. Lett. 34, L12703 (2007).

    Article  Google Scholar 

  28. 28

    Turner, J., Lachlan-Cope, T. A., Colwell, S., Marshall, G. J. & Connolley, W. M. Significant warming of the Antarctic winter troposphere. Science 311, 1914–1917 (2006).

    Article  Google Scholar 

  29. 29

    Barrett, B. E., Nicholls, K. W., Murray, T., Smith, A. M. & Vaughan, D. G. Rapid recent warming on Rutford Ice Stream, West Antarctica, from borehole thermometry. Geophys. Res. Lett. 36, L02708 (2009).

    Article  Google Scholar 

  30. 30

    Orsi, A. J., Cornuelle, B. D. & Severinghaus, J. P. Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide. Geophys. Res. Lett. 39, L09710 (2012).

    Article  Google Scholar 

  31. 31

    Lee, T. & McPhaden, M. J. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett. 37, L14603 (2010).

    Google Scholar 

  32. 32

    Mo, K. C. Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Clim. 13, 3599–3610 (2000).

    Article  Google Scholar 

  33. 33

    Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. & Rind, D. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 113, C03S90 (2008).

    Article  Google Scholar 

  34. 34

    Fogt, R. L., Bromwich, D. H. & Hines, K. M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dynam. 36, 1555–1576 (2011).

    Article  Google Scholar 

  35. 35

    J. Atm. Sci. 62 (2005).

  36. 36

    Haigh, J. D. & Roscoe, H. K. The final warming date of the Antarctic polar vortex and influences on its interannual variability. J. Clim. 22, 5809–5819 (2009).

    Article  Google Scholar 

  37. 37

    Kwok, R. & Comiso, J. C. Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett. 29, 1705 (2002).

    Google Scholar 

  38. 38

    Gillett, N. P. & Thompson, D. W. J. Simulation of recent Southern Hemisphere climate change. Science 302, 273–275 (2003).

    Article  Google Scholar 

  39. 39

    Van den Broeke, M. R. & van Lipzig, N. P. M. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann. Glaciol. 39, 119–126 (2004).

    Article  Google Scholar 

  40. 40

    Marshall, G. J. et al. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 31, L14205 (2004).

    Article  Google Scholar 

  41. 41

    Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article  Google Scholar 

  42. 42

    Nicolas, J. P. & Bromwich, D. H. Climate of West Antarctica and influence of marine air intrusions. J. Clim. 24, 49–67 (2011).

    Article  Google Scholar 

  43. 43

    Bertler, N. A. N. et al. El Niño suppresses Antarctic warming. Geophys. Res. Lett. 31, L15207 (2004).

    Article  Google Scholar 

  44. 44

    Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. http://dx.doi.org/10.1002/joc.3558 (2012).

  45. 45

    Jacobs, S. S. & Comiso, J. C. Climate variability in the Amundsen and Bellingshausen Seas. J. Clim. 10, 697–709 (1997).

    Article  Google Scholar 

  46. 46

    Ding, Q., Steig, E. J., Battisti, D. S. & Wallace, J. M. Influence of the tropics on the Southern Annular Mode. J. Clim. 25, 6330–6348 (2012).

    Article  Google Scholar 

  47. 47

    Turner, J. et al. The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Clim. 17, 2890–2898 (2004).

    Article  Google Scholar 

  48. 48

    Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  49. 49

    Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    Article  Google Scholar 

  50. 50

    Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. 117, D05127 (2012).

    Google Scholar 

Download references


This work was financially supported by the National Science Foundation (NSF) through grant ATM-0751291. The Antarctic Meteorological Research Center, provider of the AWS observations, is supported by the NSF Office of Polar Programs through grant ANT-0838834. We thank H. Brecher, R. Fogt, C. Genthon, T. Wilson and S-H. Wang for their insight/assistance at various stages of this work. We are also grateful to S. Colwell (British Antarctic Survey) for maintaining the READER database. This is contribution 1428 of the Byrd Polar Research Center.

Author information




D.H.B., J.P.N. and A.J.M. designed the research. D.H.B. and J.P.N. performed the temperature reconstruction and wrote the paper. D.H.B., J.P.N. and A.B.W. analysed the results. M.A.L., L.M.K. and G.A.W. tested the AWS hardware and provided corrected AWS data. All authors commented on the manuscript.

Corresponding authors

Correspondence to David H. Bromwich or Julien P. Nicolas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6870 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bromwich, D., Nicolas, J., Monaghan, A. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geosci 6, 139–145 (2013). https://doi.org/10.1038/ngeo1671

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing