Arc magmas sourced from mélange diapirs in subduction zones

Abstract

At subduction zones, crustal material enters the mantle. Some of this material, however, is returned to the overriding plate through volcanic and plutonic activity. Magmas erupted above subduction zones show a characteristic range of compositions that reflect mixing in the magma source region between three components: hydrous fluids derived from the subducted oceanic crust, components of the thin veneer of subducted sediments and peridotite mantle rocks. The mechanism for mixing and transport of these components has been enigmatic. A combination of results from the fields of petrology, numerical modelling, geophysics and geochemistry suggests a two-step process. First, intensely mixed metamorphic rock formations—mélanges—form along the interface between the subducted slab and the mantle. As the mélange contains the characteristic three-component geochemical pattern of subduction-zone magmas, we suggest that mélange formation provides the physical mixing process. Then, blobs of low-density mélange material—diapirs—rise buoyantly from the surface of the subducting slab and transport the well-mixed mélange material into the mantle beneath the volcanoes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Trace-element compositions of mélange rocks in comparison with subduction-zone volcanic rocks.
Figure 2: 3D schematic drawing of a subduction zone depicting the principle elements of the mélange-diapir model.

References

  1. 1

    Arculus, R. J. & Powell, R. Source component mixing in the regions of arc magma generation. J. Geophys. Res. B 91, 5913–5926 (1986).

  2. 2

    Ellam, R. & Hawkesworth, C. J. Elemental and isotopic variations in subduction related basalts: Evidence for a three component model. Contrib. Mineral. Petrol. 98, 72–80 (1988).

  3. 3

    Elliott, T. in Inside the Subduction Factory 1st edn vol. 138 (ed. Eiler, J.) 23–45 (Geophys. Monogr. Ser., Am. Geophys. Union, 2003).

  4. 4

    Furukawa, Y. Depth of the decoupling plate interface and thermal structure under arcs. J. Geophys. Res. (B) 98, 20005–20013 (1993).

  5. 5

    Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

  6. 6

    Cloos, M. & Shreve, R. L. Subduction channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl. Geophys. 128, 455–500 (1988).

  7. 7

    Guillot, S., Hattori, K. H., Agard, P., Schwartz, S. & Vidal, O. in Subduction Zone Geodynamics (eds Lallemand, S. & Funiciello, F.) 175–205 (Springer, 2009).

  8. 8

    King, R. L., Kohn, M. J. & Eiler, J. M. Constraints on the petrologic structure of the subduction zone slab–mantle interface from Franciscan Complex exotic ultramafic blocks. GSA Bull. 115, 1097–1109 (2003).

  9. 9

    Gerya, T. V., Stoeckhert, B. & Perchuk, A. L. Exhumation of high-pressure metamorphic rocks in a subduction channel; a numerical simulation. Tectonics 21, 6–19 (2002).

  10. 10

    Bebout, G. E. Field-based evidence for devolatilization in subduction zones: Implications for arc magmatism. Science 251, 413–416 (1991).

  11. 11

    Sorensen, S. S. & Grossman, J. N. Accessory minerals and subduction zone metasomatism: A geochemical comparison of two mélanges (Washington and California, USA). Chem. Geol. 110, 269–297 (1993).

  12. 12

    Bebout, G. E. & Barton, M. D. Tectonic and metasomatic mixing in a high-T, subduction-zone mélange—insights into the geochemical evolution of the slab–mantle interface. Chem. Geol. 187, 79–106 (2002).

  13. 13

    Miller, D. P., Marschall, H. R. & Schumacher, J. C. Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): Implications for reactions at the slab–mantle interface. Lithos 107, 53–67 (2009).

  14. 14

    Van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. (B) 116, 01401 (2011).

  15. 15

    Spandler, C., Hermann, J., Faure, K., Mavrogenes, J. A. & Arculus, R. The importance of talc and chlorite hybrid rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib. Mineral. Petrol. 155, 181–198 (2008).

  16. 16

    Harlow, G. E. Jadeitite from Guatemala: New observations and distinctions among multiple occurrences. Geol. Acta 9, 363–387 (2011).

  17. 17

    Tsujimori, T. & Harlow, G. E. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: A review. Eur. J. Mineral. 24, 371–390 (2012).

  18. 18

    Sorensen, S. S., Sisson, V. B., Harlow, G. E. & Avé Lallemant, H. G. Element residence and transport during subduction zone metasomatism: Evidence from a jadeitite-serpentinite contact, Guatemala. Internat. Geol. Rev. 52, 899–940 (2010).

  19. 19

    Sorensen, S. S., Grossman, J. N. & Perfit, M. R. Phengite-hosted LILE enrichment in eclogite and related rocks: Implications for fluid-mediated mass transfer in subduction zones and arc magma genesis. J. Petrol. 38, 3–34 (1997).

  20. 20

    Tatsumi, Y. Migration of fluid phases and genesis of basalt magmas in subduction zones. J. Geophys. Res. (B) 94, 4697–4707 (1989).

  21. 21

    Pawley, A. Chlorite stability in mantle peridotite: The reaction clinochlore + enstatite = forsterite + pyrope + H2O. Contrib. Mineral. Petrol. 144, 449–456 (2003).

  22. 22

    Grove, T. L., Till, C. B., Lev, E., Chatterjee, N. & Médard, E. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459, 694–697 (2009).

  23. 23

    Marschall, H. R., Ludwig, T., Altherr, R., Kalt, A. & Tonarini, S. Syros metasomatic tourmaline: Evidence for very high- δ11B fluids in subduction zones. J. Petrol. 47, 1915–1942 (2006).

  24. 24

    Helffrich, G. & Abers, G. A. Slab low-velocity layer in the eastern Aleutian subduction zone. Geophys. J. Inter. 130, 640–648 (1997).

  25. 25

    Abers, G. A. Seismic low-velocity layer at the top of subducting slabs: Observations, predictions, and systematics. Phys. Earth Planet. Inter. 149, 7–29 (2005).

  26. 26

    King, R. L., Bebout, G. E., Moriguti, T. & Nakamura, E. Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation: Obstacles to identification of fluid sources to arc volcanics. Earth Planet. Sci. Lett. 246, 288–304 (2006).

  27. 27

    Pabst, S. et al. The fate of subducted oceanic slabs in the shallow mantle: insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132–133, 162–179 (2012).

  28. 28

    Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosys. 9, Q03001 (2008).

  29. 29

    Rüpke, L. H., Phipps Morgan, J., Hort, M. & Connolly, J. A. D. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004).

  30. 30

    Gerya, T. V., Connolly, J. A. D., Yuen, D. A., Gorczyk, W. & Capel, A. M. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 156, 59–74 (2006).

  31. 31

    Castro, A. et al. Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes; implications for the origin of Cordilleran-type batholiths. J. Petrol. 51, 1267–1295 (2010).

  32. 32

    Zhu, G. et al. Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones. Geochem. Geophys. Geosys. 10, Q11006 (2009).

  33. 33

    Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H. J. Diapirs as the source of the sediment signature in arc lavas. Nature Geosci. 4, 641–646 (2011).

  34. 34

    Hasenclever, J., Phipps Morgan, J., Hort, M. & Rüpke, L. H. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge. Earth Planet. Sci. Lett. 311, 53–68 (2011).

  35. 35

    Marsh, B. D. Island arc development: Some observations, experiments, and speculations. J. Geol. 87, 687–713 (1979).

  36. 36

    Hall, P. S. & Kincaid, C. Diapiric flow at subduction zones: A recipe for rapid transport. Science 292, 2472–2475 (2001).

  37. 37

    Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520 (1994).

  38. 38

    Singer, B. S. et al. Along-strike trace element and isotopic variation in Aleutian island arc basalt: Subduction melts sediments and dehydrates serpentine. J. Geophys. Res. (B) 112, 06206 (2007).

  39. 39

    Tatsumi, Y., Sakuyama, M., Fukuyama, H. & Kushiro, I. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J. Geophys. Res. (B) 88, 5815–5825 (1983).

  40. 40

    Keleman, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L. & Hacker, B. R. in Inside the Subduction Factory vol. 138 (ed. Eiler, J.) 293–311 (Monographs, Am. Geophys. Union, 2003).

  41. 41

    Kelley, K. A. et al. Mantle melting as a function of water content beneath the Mariana arc. J. Petrol. 51, 1711–1738 (2010).

  42. 42

    Peacock, S. M. et al. Thermal structure of the Costa Rica-Nicaragua subduction zone. Phys. Earth Planet. Inter. 149, 187–200 (2005).

  43. 43

    Currie, C. A. & Hyndman, R. D. The thermal structure of subduction zone back arcs. J. Geophys. Res. (B) 111, 08404 (2006).

  44. 44

    Morris, J. D., Gosse, J., Brachfeld, S. & Tera, F. in Beryllium: Mineralogy, Petrology and Geochemistry Vol. 50 (ed. Grew, E. S.) Ch. 5, 207–270 (Rev. Mineral., Mineral. Soc. Am., 2002).

  45. 45

    Turner, S., Evans, P. & Hawkesworth, C. J. Ultra-fast source-to-surface movement of melt at island arcs from 226Ra–230Th systematics. Science 292, 1363–1366 (2001).

  46. 46

    Kelemen, P. B., Hanghøj, K. & Greene, A. R. in The Crust Vol. 3 (eds Rudnick, R. L., Holland, H. D. & Turekian, K. K.) 593–659 (Treatise on Geochemistry, Elsevier-Pergamon, 2003).

  47. 47

    McDonough, W. F. & Sun, S-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

  48. 48

    Hofmann, A. W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

  49. 49

    Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

Download references

Acknowledgements

We thank J. Blundy, N. Shimizu, G. Abers and the participants of the 2010 State-of-the-Arc meeting for discussions. G. Harlow is thanked for providing unpublished whole-rock data. Careful and constructive reviews by B. Hacker, S. Penniston-Dorland and P. Agard are gratefully acknowledged. H.M. was financially supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists. Financial support from NSF grant no. 1119403 (G. Harlow) is acknowledged. We would like to thank A. Hertwig, W. Maresch and H-P. Schertl for guiding us in the field.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to idea development and data compilation. H.R.M. wrote the manuscript.

Corresponding author

Correspondence to Horst R. Marschall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 997 kb)

Supplementary Information

Supplementary Information (XLS 237 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marschall, H., Schumacher, J. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geosci 5, 862–867 (2012). https://doi.org/10.1038/ngeo1634

Download citation

Further reading