Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variability of the North Atlantic Oscillation over the past 5,200 years

Abstract

Climate in the Arctic region and northwestern Europe is strongly affected by the North Atlantic Oscillation1,2 (NAO), the dominant mode of atmospheric variability at mid-latitudes in the North Atlantic region. The NAO index is an indicator of atmospheric circulation and weather patterns: when the index is positive, Europe and the eastern US are mild and wet, whereas Greenland and northern Canada are cold and dry. A negative index is associated with the reverse pattern. Reconstructions of the NAO have so far been limited to the past 900 years3. Here we analyse a 5,200-year-long, high-resolution lake sediment record from southwestern Greenland to reconstruct lake hypolimnic anoxia, and link the results to an existing reconstruction of the NAO index from tree rings and speleothems3. Using the relationship between the two records, we find that around 4,500 and 650 years ago—around the end of the Holocene Thermal Maximum and the beginning of the Little Ice Age, respectively—the NAO changed from generally positive to variable, intermittently negative conditions. We suggest that variability in the dominant state of the NAO tend to coincide with large-scale changes in Northern Hemisphere climate. However, the onset of the Medieval Climate Anomaly was not associated with any notable changes in the NAO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Instrumental climate and limnological data from Lake SS1220 (August 2001 and August 2004) and the Kangerlussuaq area.
Figure 2: Linking in-lake palaeo-redox variability to NAO reconstructions.
Figure 3: Redox-variability and inferred NAO circulation patterns over the past 5 kyr.
Figure 4: Characteristic NAO periodicities—instrumental and palaeo data.

Similar content being viewed by others

References

  1. Post, E. & Forchhammer, M. C. Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171 (2002).

    Article  Google Scholar 

  2. Hinzman, L. D. et al. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72, 251–298 (2005).

    Article  Google Scholar 

  3. Trouet, V. et al. Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science 324, 78–80 (2009).

    Article  Google Scholar 

  4. Jevrejeva, S., Moore, J. C. & Grinsted, A. Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Change 80-81, 14–20 (2012).

    Article  Google Scholar 

  5. Renssen, H. et al. Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Clim. Dynam. 24, 23–43 (2005).

    Article  Google Scholar 

  6. Kaufman, D. S. et al. Recent warming reverses long-term Arctic cooling. Science 325, 1236–1239 (2009).

    Article  Google Scholar 

  7. Seierstad, I. & Bader, J. Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Clim. Dynam. 33, 937–943 (2009).

    Article  Google Scholar 

  8. Box, J. E. Survey of Greenland instrumental temperature records: 1873–2001. Int. J. Climatol. 22, 1829–1847 (2002).

    Article  Google Scholar 

  9. Strong, C., Magnusdottir, G. & Stern, H. Observed Feedback between Winter Sea Ice and the North Atlantic Oscillation. J. Clim. 22, 6021–6032 (2009).

    Article  Google Scholar 

  10. Hurrell, J. W. & Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Marine Syst. 79, 231–244 (2009).

    Article  Google Scholar 

  11. Pausata, F. S. R., Li, C., Wettstein, J. J., Nisancioglu, K. H. & Battisti, D. S. Changes in atmospheric variability in a glacial climate and the impacts on proxy data: A model intercomparison. Clim. Past 5, 489–502 (2009).

    Article  Google Scholar 

  12. Buehler, T., Raible, C. C. & Stocker, T. F. The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A 63, 212–222 (2011).

    Article  Google Scholar 

  13. Appenzeller, C., Schwander, J., Sommer, S. & Stocker, T. F. The North Atlantic Oscillation and its imprint on precipitation and ice accumulation in Greenland. Geophys. Res. Lett. 25, 1939–1942 (1998).

    Article  Google Scholar 

  14. Mosley-Thompson, E., Readinger, C. R., Craigmile, P., Thompson, L. G. & Calder, C. A. Regional sensitivity of Greenland precipitation to NAO variability. Geophys. Res. Lett. 32, L24707 (2005).

    Article  Google Scholar 

  15. Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522–538 (2010).

    Article  Google Scholar 

  16. Walter, K. & Graf, H. F. The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength. Atmos. Chem. Phys. 5, 239–248 (2005).

    Article  Google Scholar 

  17. Engstrom, D. R. & Wright, H. E. in Lake Sediments and Environmental History (eds Haworth, E. Y. & Lund, J. W. G.) 1–68 (Leicester Univ. Press, 1984).

    Google Scholar 

  18. Davison, W. Iron and manganese in lakes. Earth Sci. Rev. 34, 119–163 (1993).

    Article  Google Scholar 

  19. Mackereth, F. J. H. Some chemical observations on post-glacial lake sediments. Phil. Trans. R. Soc. B 250, 165–213 (1966).

    Article  Google Scholar 

  20. D’Andrea, W. J., Huang, Y. S., Fritz, S. C. & Anderson, N. J. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl Acad. Sci. USA 108 (2011).

  21. Trouet, V., Scourse, J. D. & Raible, C. C. North atlantic storminess and atlantic meridional overturning circulation during the last millennium: Reconciling contradictory proxy records of NAO variability. Glob. Planet. Change 84–85, 48–55 (2012).

    Article  Google Scholar 

  22. Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).

    Article  Google Scholar 

  23. Hurrell, J. W., Yochanan, K., Ottersen, G. & Visbeck, M. H. in The North Atlantic Oscillation: Climatic Significance and Environmental Impact Vol. 134 (eds Hurrell, J. W., Yochanan, K., Ottersen, G. & Visbeck, M. H.) 1–36 (AGU, 2003).

    Google Scholar 

  24. Cook, E. R., D’Arrigo, R. D. & Mann, M. E. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since AD 1400. J. Clim. 15, 1754–1764 (2002).

    Article  Google Scholar 

  25. Tiwari, R. K. & Srilakshmi, S. Periodicities and non-stationary modes in tree rings temperature variability record of the western Himalayas by multitaper and wavelet spectral analyses. Curr. Sci. India 97, 705–709 (2009).

    Google Scholar 

  26. Knudsen, M. F., Seidenkrantz, M-S., Jacobsen, B. H. & Kuijpers, A. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Commun. 2, 178 (2011).

    Article  Google Scholar 

  27. Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M. & Mann, M. E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32, L20708 (2005).

    Article  Google Scholar 

  28. Yang, D. & Myers, P. G. Impact of extended NAO buoyancy forcing on the subpolar North Atlantic and climate variability over the last millenium. Paleoceanography 22, PA3104 (2007).

    Article  Google Scholar 

  29. Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M. & Brayshaw, D. J. Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nature Geosci. 5, 313–317 (2012).

    Article  Google Scholar 

  30. Vinther, B. M., Johnsen, S. J., Andersen, K. K., Clausen, H. B. & Hansen, A. W. NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys. Res. Lett. 30, 1387 (2003).

    Article  Google Scholar 

  31. Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

J.O. and M.F.K. were supported by the Carlsberg Foundation (Grants 2006_01_0451, 2007_01_0417 and 2008_01_0416). Fieldwork and collection of the local meteorological data was supported by a Danish Research Council award to N.J.A. (SNF: 21-00-0288).

Author information

Authors and Affiliations

Authors

Contributions

J.O. and N.J.A. designed the study. Fieldwork was undertaken by N.J.A., while J.O. did the primary data collection. J.O. and M.F.K. did the statistical analyses and all authors contributed to writing the manuscript.

Corresponding author

Correspondence to Jesper Olsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1785 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, J., Anderson, N. & Knudsen, M. Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geosci 5, 808–812 (2012). https://doi.org/10.1038/ngeo1589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing