Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contributions to late Archaean sulphur cycling by life on land

Abstract

Evidence in palaeosols suggests that life on land dates back to at least 2.76 Gyr ago1,2. However, the biogeochemical effects of Archaean terrestrial life are thought to have been limited, owing to the lack of a protective ozone shield from ultraviolet radiation for terrestrial organisms before the rise of atmospheric oxygen levels several hundred million years later3. Records of chromium delivery from the continents suggest that microbial mineral oxidation began at least 2.48 Gyr ago4 but do not indicate when the terrestrial biosphere began to dominate important biogeochemical cycles. Here we combine marine sulphur abundance data with a mass balance model of the sulphur cycle to estimate the effects of the Archaean and early Proterozoic terrestrial biosphere on sulphur cycling. We find that terrestrial oxidation of pyrite by microbes using oxygen has contributed a substantial fraction of the total sulphur weathering flux since at least 2.5 Gyr ago, with probable evidence of such activity 2.7–2.8 Gyr ago. The late Archaean onset of terrestrial sulphur cycling is supported by marine molybdenum abundance data and coincides with a shift to more sulphidic ocean conditions5. We infer that significant microbial land colonization began by 2.7–2.8 Gyr ago. Our identification of pyrite oxidation at this time provides further support for the appearance6 of molecular oxygen several hundred million years before the Great Oxidation Event.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Total inferred weathering flux Fw to continental margins over time.
Figure 2: Contribution of different sulphur sources to continental margin sediments.
Figure 3: Molybdenum concentrations in the late Archaean and early Proterozoic.

References

  1. Rye, R. & Holland, H. D. Life associated with a 2.76 Ga ephemeral pond?: Evidence from Mount Roe #2 paleosol. Geology 28, 483–486 (2000).

    Article  Google Scholar 

  2. Watanabe, Y., Martini, J. E. J. & Ohmoto, H. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408, 574–578 (2000).

    Article  Google Scholar 

  3. Cockell, C. S. The ultraviolet history of the terrestrial planets - implications for biological evolution. Planet. Space Sci. 48, 203–214 (2000).

    Article  Google Scholar 

  4. Konhauser, K. O. et al. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369–373 (2011).

    Article  Google Scholar 

  5. Reinhard, C. T., Raiswell, R., Scott, C. T., Anbar, A. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article  Google Scholar 

  6. Buick, R. When did oxygenic photosynthesis evolve? Phil. Trans. R. Soc. B 363, 2731–2743 (2008).

    Article  Google Scholar 

  7. Canfield, D. E. The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304, 839–861 (2004).

    Article  Google Scholar 

  8. Williamson, M. A. & Rimstidt, J. D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 58, 5443–5454 (1994).

    Article  Google Scholar 

  9. Catling, D. C. & Claire, M. W. How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237, 1–20 (2005).

    Article  Google Scholar 

  10. England, G. L., Rasmussen, B., Krapez, B. & Groves, D. I. Palaeoenvironmental significance of rounded pyrite in siliclastic sequences of the Late Archaean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology 49, 1133–1156 (2002).

    Article  Google Scholar 

  11. Rasmussen, B. & Buick, R. Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27, 115–118 (1999).

    Article  Google Scholar 

  12. Holland, H. D. When did the Earth’s atmosphere become oxic? A Reply. Geochem. News 100, 20–22 (1999).

    Google Scholar 

  13. Taylor, S. R. Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 28, 1273–1285 (1964).

    Article  Google Scholar 

  14. Eggins, S. M. et al. A simple method for precise determination of >40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem. Geol. 134, 311–326 (1997).

    Article  Google Scholar 

  15. Strauss, H. in Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems (eds Altermann, W. & Corcoran, P. L.) (Blackwell Science, 2002).

    Google Scholar 

  16. Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706–709 (2007).

    Article  Google Scholar 

  17. Zahnle, K. J., Claire, M. W. & Catling, D. C. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006).

    Article  Google Scholar 

  18. Walker, J. J. & Pace, N. R. Endolithic microbial ecosystems. Annu. Rev. Microbiol. 61, 331–347 (2007).

    Article  Google Scholar 

  19. Buick, R. The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archean lakes. Science 255, 74–77 (1992).

    Article  Google Scholar 

  20. Pavlov, A. A., Brown, L. L. & Kasting, J. F. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 23267–23287 (2001).

    Article  Google Scholar 

  21. Wolf, E. T. & Toon, O. B. Fractal organic haze provided an ultraviolet shield for early earth. Science 328, 1266–1268 (2010).

    Article  Google Scholar 

  22. Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  23. Knauth, L. P. & Kennedy, M. J. The late Precambrian greening of the Earth. Nature 460, 728–732 (2009).

    Google Scholar 

  24. Shen, Y., Buick, R. & Canfield, D. E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81 (2001).

    Article  Google Scholar 

  25. Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean Ocean. Science 298, 2372–2374 (2002).

    Article  Google Scholar 

  26. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  Google Scholar 

  27. Liang, M-C., Hartman, H., Kopp, R. E., Kirschvink, J. L. & Yung, Y. L. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 103, 18896–18899 (2006).

    Article  Google Scholar 

  28. Emerson, S. & Hedges, J. Chemical Oceanography and The Marine Carbon Cycle (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

Download references

Acknowledgements

We thank H. Strauss for sharing his sulphur database. This study was financially supported by NSF EAR-0921580. D.C.C. also acknowledges support from NASA Astrobiology grant NNX10AQ90G and the NAI Virtual Planetary Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

E.E.S. and D.C.C. designed and analysed the model, and all authors contributed to the collection of literature data and the composition of the manuscript.

Corresponding author

Correspondence to Eva E. Stüeken.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2273 kb)

Supplementary Information

Supplementary Information (PDF 1190 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stüeken, E., Catling, D. & Buick, R. Contributions to late Archaean sulphur cycling by life on land. Nature Geosci 5, 722–725 (2012). https://doi.org/10.1038/ngeo1585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing