Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An update on Earth's energy balance in light of the latest global observations


Climate change is governed by changes to the global energy balance. At the top of the atmosphere, this balance is monitored globally by satellite sensors that provide measurements of energy flowing to and from Earth. By contrast, observations at the surface are limited mostly to land areas. As a result, the global balance of energy fluxes within the atmosphere or at Earth's surface cannot be derived directly from measured fluxes, and is therefore uncertain. This lack of precise knowledge of surface energy fluxes profoundly affects our ability to understand how Earth's climate responds to increasing concentrations of greenhouse gases. In light of compilations of up-to-date surface and satellite data, the surface energy balance needs to be revised. Specifically, the longwave radiation received at the surface is estimated to be significantly larger, by between 10 and 17 Wm−2, than earlier model-based estimates. Moreover, the latest satellite observations of global precipitation indicate that more precipitation is generated than previously thought. This additional precipitation is sustained by more energy leaving the surface by evaporation — that is, in the form of latent heat flux — and thereby offsets much of the increase in longwave flux to the surface.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Surface energy balance.
Figure 2: The change in energy fluxes expressed as flux sensitivities (Wm−2 K−1) due to a warming climate.


  1. 1

    Andrews, T., Forster, P. M. & Gregory, J. M. A surface energy perspective on climate change. J. Clim. 22, 2557–2570 (2009).

    Article  Google Scholar 

  2. 2

    Abbot, C. G. & Fowle, F. E. Radiation and terrestrial temperature. Ann. Astrophys. Obs. Smithsonian Inst. 2, 125–224 (1908).

    Google Scholar 

  3. 3

    Dines, W. H. The heat balance of the atmosphere. Q. J. R. Meteorol. Soc. 43, 151–158 (1917).

    Article  Google Scholar 

  4. 4

    Vonder Haar, T. H. & Suomi, V. Measurements of the Earth's radiation budget from satellites during a 5 year period. I. Extended time and space means. J. Atmos. Sci. 28, 305–314 (1971).

    Article  Google Scholar 

  5. 5

    Hunt, G. E., Kandel, R. & Mecherikunnel, A. T. A history of pre-satellite investigations of the Earth's radiation budget. Rev. Geophys. 24, 351–356 (1986).

    Article  Google Scholar 

  6. 6

    Stephens, G. L., Campbell, G. & Vonder Haar, T. Earth radiation budgets. J. Geophys. Res. 86, 9739–9760 (1981).

    Article  Google Scholar 

  7. 7

    Harrison, E. F. et al. Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res. 95, 18687–18703 (1990).

    Article  Google Scholar 

  8. 8

    Wielicki, B. A. et al. Clouds and the Earth's Radiant Energy System (CERES): An Earth observing system experiment. Bull. Am. Meteorol. Soc. 77, 853–868 (1996).

    Article  Google Scholar 

  9. 9

    Kandel, R. et al. The ScaRaB Earth radiation budget dataset. Bull. Am. Meteorol. Soc. 79, 765–783 (1998).

    Article  Google Scholar 

  10. 10

    Stephens, G. L. et al. The CloudSat mission and the A-train. Bull. Am. Meteorol. Soc. 83, 1771–1790 (2002).

    Article  Google Scholar 

  11. 11

    Hansen, J. et al. Earth's energy imbalance: Confirmation and implications. Science 308, 1431–1435 (2005).

    Article  Google Scholar 

  12. 12

    Harries, J. E. & Belotti, C. On the variability of the global net radiative energy balance of the nonequilibrium Earth. J. Clim. 23, 1277–1290 (2010).

    Article  Google Scholar 

  13. 13

    Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010).

    Article  Google Scholar 

  14. 14

    Willis, J. K., Lyman, J. M., Johnson, G. C. & Gilson, J. In situ data biases and recent ocean heat content variability. J. Atmos. Ocean. Technol. 26, 846–852 (2009).

    Article  Google Scholar 

  15. 15

    Loeb, N. et al. Toward optimal closure of the Earth's top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009).

    Article  Google Scholar 

  16. 16

    Loeb, N. et al. Heating of Earth's climate system continues despite lack of surface warming in past decade. Nature Geosci. 5, 110–113 (2012).

    Article  Google Scholar 

  17. 17

    Wong, T. et al. Reexamination of the observed decadal variability of the Earth radiation budget using altitude corrected ERBE/ERBS non scanner WFOV data. J. Clim. 19, 4028–4040 (2006).

    Article  Google Scholar 

  18. 18

    Wild, M. J., Grieser, J. & Schar, C. Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett. 35, L17706 (2008).

    Article  Google Scholar 

  19. 19

    Streets, D. G. et al. Discerning human and natural signatures in regional aerosol trends. J. Geophys. Res. 114, D00D18 (2009).

    Article  Google Scholar 

  20. 20

    Trenberth, K. E. & Dai, A. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett. 34, L15702 (2007).

    Article  Google Scholar 

  21. 21

    National Research Council Radiative Forcing of Climate Change (National Academies Press, 2005).

  22. 22

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Google Scholar 

  23. 23

    Stephens, G. L. & Ellis, T. D. Controls of global-mean precipitation increases in global warming GCM experiments. J. Clim. 21, 6141–6155 (2008).

    Article  Google Scholar 

  24. 24

    Stephens, G. L. & Hu, Y. Are climate-related changes to the character of global precipitation predictable? Environ. Res. Lett. 5, 025209 (2010).

    Article  Google Scholar 

  25. 25

    Stephens, G. L. et al. The CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. 113, D00A18 (2008).

    Article  Google Scholar 

  26. 26

    Stephens, G. L. et al. The global character of the flux of downward longwave radiation. J. Clim. 25, 557–571 (2012).

    Article  Google Scholar 

  27. 27

    L'Ecuyer, T. S., Wood, N. B., Haladay, T., Stephens, G. L. & Stackhouse, P. W. Jr Impact of clouds on the atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res. 113, D00A15 (2008).

    Article  Google Scholar 

  28. 28

    Clough, S. A., Iacono, M. J. & Moncet, J-L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res. 97, 761–785 (1992).

    Article  Google Scholar 

  29. 29

    Costa, S. M. S. & Shine, K. P. Outgoing longwave radiation due to directly transmitted surface emission J. Atmos. Sci. 69, 1865–1870 (2012).

    Article  Google Scholar 

  30. 30

    Li, Z. & Leighton, H. G. Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J. Geophy. Res. 98, 4919–4930 (1993).

    Article  Google Scholar 

  31. 31

    Stephens, G. L. & Webster, P. J. Cloud decoupling of the surface and planetary radiative budgets. J. Atmos. Sci. 41, 681–686 (1984).

    Article  Google Scholar 

  32. 32

    Wild, M. Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC-AR4/CMIP3 models. Tellus A 60, 932–945 (2008).

    Article  Google Scholar 

  33. 33

    Trenberth, K. E. & Fasullo, J. T. Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett. 36, L07706 (2009).

    Article  Google Scholar 

  34. 34

    Bony, S. et al. How well do we understand and evaluate climate change feedback processes? J. Clim. 19, 3445–3482 (2006).

    Article  Google Scholar 

  35. 35

    Wong, S. et al. Closing the global water budget with AIRS water vapor, MERRA winds, and evaporation, and TRMM precipitation. J. Clim. 24, 6307–6321 (2011).

    Article  Google Scholar 

  36. 36

    Liu, W. T., Xie, X., Tang, W. & Zlotnicki, V. Space-based observations of oceanic influence on the annual variation of South American water balance. Geophys. Res. Lett. 33, L08710 (2006).

    Google Scholar 

  37. 37

    Durack, P. J. & Wijffels, S. E. Fifty-year trends in global ocean salinities and their relationship to broad-214 scale warming. J. Clim. 23, 4342–4361 (2010).

    Article  Google Scholar 

  38. 38

    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    Article  Google Scholar 

  39. 39

    Swenson, S. Assessing high-latitude winter precipitation from global precipitation analyses using GRACE. J. Hydrometeorol. 11, 405–420 (2010).

    Article  Google Scholar 

  40. 40

    Kopp, G. & Lean, J. L. A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, L01706 (2011).

    Article  Google Scholar 

  41. 41

    Kiehl, J. T. & Trenberth, K. E. Earth's annual global mean energy budget. Bull. Am. Meteorol. Soc. 78, 197–208 (1997).

    Article  Google Scholar 

  42. 42

    Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth's global energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).

    Article  Google Scholar 

  43. 43

    Zhang, Y-C., Rossow, W. B., Lacis, A. A., Oinas, V. & Mishchenko, M. I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. 109, D19105 (2004).

    Article  Google Scholar 

  44. 44

    Kato, S. et al. Computation of top-of-atmosphere and surface irradiance with CALIPSO, CloudSat, and MODIS-derived cloud and aerosol properties. J. Geophys. Res. 116, D19209 (2011).

    Article  Google Scholar 

  45. 45

    Ptashnik, I. V., Shine, K. P. & Vigasin, A. A. Water vapour self-continuum and water dimers: 1. Analysis of recent work. J. Quant. Spectrosc. Radiat. Transf. 112, 1286–1303 (2011).

    Article  Google Scholar 

  46. 46

    Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

    Article  Google Scholar 

  47. 47

    Stackhouse, P. W. Jr et al. The NASA/GEWEX surface radiation budget release 3.0, 24.5-year dataset. GEWEX News 21, 10–12 (February 2011).

    Google Scholar 

  48. 48

    Trenberth, K. E., Smith, L., Qian, T., Dai, A. & Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 8, 758–769 (2007).

    Article  Google Scholar 

  49. 49

    Berg, W., L'Ecuyer, T. & Haynes, J. M. The distribution of rainfall over oceans from space-borne radars. J. Appl. Meteorol. Climatol. 49, 535–543 (2010).

    Article  Google Scholar 

  50. 50

    Ellis, T. D., L'Ecuyer, T. S., Haynes, J. M. & Stephens, G. L. How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett. 36, L03815 (2009).

    Article  Google Scholar 

  51. 51

    Haynes, J. M. et al. Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res. 114, D00A22 (2009).

    Article  Google Scholar 

  52. 52

    Dai, A., Lin, X. & Hsu, K-L. The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Clim. Dynam. 29, 727–744 (2007).

    Article  Google Scholar 

  53. 53

    Petty, G. W. An inter-comparison of oceanic precipitation frequencies from 10 special sensor microwave/imager rain rate algorithms and shipboard present weather reports, J. Geophys. Res. 102, 1757–1777 (1997).

    Article  Google Scholar 

  54. 54

    Liu, G. Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res. 113, D00A09 (2008).

    Google Scholar 

  55. 55

    Adler, R. F. et al. The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article  Google Scholar 

  56. 56

    L'Ecuyer, T. S. & Stephens, G. L. An uncertainty model for Bayesian Monte Carlo retrieval algorithms: Application to the TRMM observing system. Q. J. R. Meteorol. Soc. 128, 1713–1737 (2002).

    Article  Google Scholar 

  57. 57

    Jimenez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102 (2011).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Graeme L. Stephens.

Supplementary information

Supplementary Information

Supplementary Information (PDF 811 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stephens, G., Li, J., Wild, M. et al. An update on Earth's energy balance in light of the latest global observations. Nature Geosci 5, 691–696 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing