Abstract
Permafrost soils contain an estimated 1,700 Pg of carbon, almost twice the present atmospheric carbon pool1. As permafrost soils thaw owing to climate warming, respiration of organic matter within these soils will transfer carbon to the atmosphere, potentially leading to a positive feedback2. Models in which the carbon cycle is uncoupled from the atmosphere, together with one-dimensional models, suggest that permafrost soils could release 7–138 Pg carbon by 2100 (refs 3, 4). Here, we use a coupled global climate model to quantify the magnitude of the warming generated by the feedback between permafrost carbon release and climate. According to our simulations, permafrost soils will release between 68 and 508 Pg carbon by 2100. We show that the additional surface warming generated by the feedback between permafrost carbon and climate is independent of the pathway of anthropogenic emissions followed in the twenty-first century. We estimate that this feedback could result in an additional warming of 0.13–1.69 °C by 2300. We further show that the upper bound for the strength of the feedback is reached under the less intensive emissions pathways. We suggest that permafrost carbon release could lead to significant warming, even under less intensive emissions trajectories.
Access options
Subscribe to Journal
Get full journal access for 1 year
$169.00
only $14.08 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



References
- 1
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).
- 2
Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 58, 701–714 (2008).
- 3
Zhuang, Q. et al. Co2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the twenty first century. Geophys. Res. Lett. 33, L17403 (2006).
- 4
Schaefer, K., Zhang, T, Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus 63B, 165–180 (2011).
- 5
Avis, C. A., Weaver, A. J. & Meissner, K. J. Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geosci. 4, 444–448 (2011).
- 6
Hegerl, G. C. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
- 7
Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–754 (2010).
- 8
Koven, C. D. et al. Permafrost carbon–climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).
- 9
Schneider von Deimling, T. et al. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 9, 649–665 (2012).
- 10
Luke, C. M. & Cox, P. M. Soil carbon and climate change: from the Jenkinson effect to the compost–bomb instability. Eur. J. Soil Sci. 62, 5–12 (2011).
- 11
Weaver, A. J. et al. The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmosphere–Ocean 39, 1–67 (2001).
- 12
Schmittner, A., Oschlies, A., Matthews, H. D. & Galbraith, E. D. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual Co2 emission scenario until year 4000 AD. Glob. Biogeochem. Cycles 22, GB1013 (2008).
- 13
Matthews, H. D., Weaver, A. J., Meissner, K. J., Gillett, N. P. & Eby, M. Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim. Dynam. 22, 461–479 (2004).
- 14
Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2008).
Acknowledgements
The authors are grateful to NSERC for support in the form of CGS fellowships awarded to A.H.M.D. and C.A.A., as well as a Discovery Grant awarded to A.J.W.
Author information
Affiliations
Contributions
A.H.M.D., A.J.W. and C.A.A. formulated the model experiments and wrote the paper. A.H.M.D. performed modifications to the ESCM, conducted experiments and analysed the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1359 kb)
Rights and permissions
About this article
Cite this article
MacDougall, A., Avis, C. & Weaver, A. Significant contribution to climate warming from the permafrost carbon feedback. Nature Geosci 5, 719–721 (2012). https://doi.org/10.1038/ngeo1573
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Soil organic carbon becomes newer under warming at a permafrost site on the Tibetan Plateau
Soil Biology and Biochemistry (2021)
-
Significant shallow–depth soil warming over Russia during the past 40 years
Global and Planetary Change (2021)
-
Carbon release through abrupt permafrost thaw
Nature Geoscience (2020)
-
Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem
Functional Ecology (2020)
-
Distributive features of soil carbon and nutrients in permafrost regions affected by forest fires in northern Da Xing’anling (Hinggan) Mountains, NE China
CATENA (2020)