Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global and regional climate changes due to black carbon

Abstract

Black carbon in soot is the dominant absorber of visible solar radiation in the atmosphere. Anthropogenic sources of black carbon, although distributed globally, are most concentrated in the tropics where solar irradiance is highest. Black carbon is often transported over long distances, mixing with other aerosols along the way. The aerosol mix can form transcontinental plumes of atmospheric brown clouds, with vertical extents of 3 to 5 km. Because of the combination of high absorption, a regional distribution roughly aligned with solar irradiance, and the capacity to form widespread atmospheric brown clouds in a mixture with other aerosols, emissions of black carbon are the second strongest contribution to current global warming, after carbon dioxide emissions. In the Himalayan region, solar heating from black carbon at high elevations may be just as important as carbon dioxide in the melting of snowpacks and glaciers. The interception of solar radiation by atmospheric brown clouds leads to dimming at the Earth's surface with important implications for the hydrological cycle, and the deposition of black carbon darkens snow and ice surfaces, which can contribute to melting, in particular of Arctic sea ice.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Global distribution of BC sources and radiative forcing.
Figure 2: Comparison of the global mean radiative forcing due to greenhouse gases (GHGs) with that of ABCs.
Figure 3: Simulated atmospheric temperature change due to GHGs and BC for the South Asian region.
Figure 4: Precipitation trend from 1950–2002.
Figure 5: The effect of biofuel cooking on Asian BC loading.

References

  1. Andreae, M. O. & Crutzen, P. J. Atmospheric aerosols: Bio-geochemical sources and role in atmospheric chemistry. Science 276, 1052–1056 (1997).

    Article  Google Scholar 

  2. Penner, J. E. & Novakov, T. Carbonaceous particles in the atmosphere: A historical perspective to the Fifth International Conference on Carbonaceous Particles in the Atmosphere. J. Geophys. Res. 101, 19373–19378 (1996).

    Article  Google Scholar 

  3. Andreae, M. O. & Geleneser, A. Black carbon or brown carbon? the nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148 (2006).

    Article  Google Scholar 

  4. Bond, T. C. et al. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 109, doi:10.1029/2003JD003697 (2004).

  5. Russell, P. B., Hobbs, P. V., & Stowe, L. L. Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). J. Geophys. Res. 104, 2213–2222 (1999).

    Article  Google Scholar 

  6. Scholes, M. & Andreae, M. O. Biogenic and pyrogenic emisssion from Africa and their impact on the global atmosphere. Ambio 29, 23–29 (2000).

    Article  Google Scholar 

  7. Ramanathan, V. et al. Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res. 106, 28371–28398 (2001).

    Article  Google Scholar 

  8. Kaufman, Y. J., Tucker, C. J., & Mahoney, R. L. Fossil fuel and biomass burning effect on climate: heating or cooling? J. Climate 4, 578–588 (1991).

    Article  Google Scholar 

  9. Abel, S. J. et al. Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa. Geophys. Res. Lett. 30, doi:10.1029/2003GL017342 (2003).

  10. Bellouin, N., Boucher, O., Tanré, D., & Dubovik, O. Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations. Geophys. Res. Lett. 30, doi:10.1029/2003GL017121 (2003).

  11. Eck, T. F. et al. Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements. J. Geophys. Res. 108, doi:10.1029/2002JD002321 (2003).

  12. Haywood, J. M. et al. The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J. Geophys. Res. 108, doi:10.1029/2002JD002226 (2003).

  13. Hsu, N. C., Herman, J. R., & Tsay, S. C. Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia. Geophys. Res. Lett. 108, doi:10.1029/2002GL016485 (2003).

  14. Ramanathan, V. et al. Warming trends in Asia amplified by brown cloud solar absorption. Nature 448, 575–578 (2007).

    Article  Google Scholar 

  15. Kaufman, Y. J. et al. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophys. Res. Lett. 28, 1479–1482 (2001).

    Article  Google Scholar 

  16. Guazzotti, S. A., Coffee, K. R., & Prather, K. A. Continuous measurements of size-resolved particle chemistry during INDOEX-Intensive Field Phase 99. J. Geophys. Res. 106, 28607–28628 (2001).

    Article  Google Scholar 

  17. Rodhe, H., Persson, C., & Akesson, O. An investigation into regional transport of soot and sulfate aerosols. Atmos. Environ. 6, 675–693 (1972).

    Article  Google Scholar 

  18. Novakov, T. et al. Large historical changes of fossil-fuel black carbon aerosols. Geophys. Res. Lett. 30, doi:10.1029/2002GL016345 (2003).

  19. Bond, T. C. et al. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem. Cycles 21, doi:10.1029/2006GB002840 (2007).

  20. Danckelman, V. Die Bewölkungsverhältnisse des südwestlichen Afrikas. Meteor. Z. 1, 301–311 (1884).

    Google Scholar 

  21. Yu, H. et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 6, 613–666 (2006).

    Article  Google Scholar 

  22. Bellouin, N., Boucher, O., Haywood, J., & Reddy, M. S. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 438, 1138–1141 (2005).

    Article  Google Scholar 

  23. Chung, C., Ramanathan, V., Kim, D., & Podgorny, I. A. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res. 110, doi:10.1029/2005JD006356 (2005).

  24. Ramanathan, V. et al. Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J. Geophys. Res. 112, doi:10.1029/2006JD008124 (2007).

  25. Kirchstetter, T. W., Novakov, T., & Hobbs, P. V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109, doi:10.1029/2004JD004999 (2004).

  26. Ramanathan, V. The role of ocean-atmosphere interactions in the CO2 climate problem. J. Atmos. Sci. 38, (918–930) (1981).

    Article  Google Scholar 

  27. Kiehl, J. T. & Briegleb, B. P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311–314 (1993).

    Article  Google Scholar 

  28. Ramanathan, V., Lian, M. S., & Cess, R. D. Increased atmospheric CO2: Zonal and Seasonal Estimates of the Effect on the Radiation Energy Balance and Surface Temperature. J. Geophys. Res. 84, 4949–4958 (1979).

    Article  Google Scholar 

  29. Cess, R. D. Arctic aerosols: Model estimates of interactive influences upon the surface-atmosphere clear-sky radiation budget. Atmos. Environ. 17, 2555–2564 (1983).

    Article  Google Scholar 

  30. Clarke, A. & Noone, K. Soot in the Arctic: a cause for perturbation in radiative transfer. J. Geophys. Res. 19, 2045–2053 (1985).

    Google Scholar 

  31. Chylek, P., Ramaswamy, V., & Cheng, R. J. Effect of graphitic carbon on the albedo of clouds. J. Atmos. Sci. 41, 3076–3084 (1984).

    Article  Google Scholar 

  32. Warren, S. & Wiscombe, W. Dirty snow after nuclear war. Nature 313, 467–470 (1985).

    Article  Google Scholar 

  33. Jacobson, M. Z. Effects of absorption by soot inclusions within clouds and precipitation on global climate. J. Phys. Chem. 110, 6860–6873 (2006).

    Article  Google Scholar 

  34. Mikhailov, E. F. et al. Optical properties of soot-water drop agglomerates: an experimental study. J. Geophys. Res. 111, doi:10.1029/2005JD006389 (2006).

  35. Andreae, M. O., Jones, C. D., & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2003).

    Article  Google Scholar 

  36. Crutzen, P. J. & Ramanathan, V. The Parasol Effect in Climate. Science 302, 1679–1681 (2003).

    Article  Google Scholar 

  37. Forster, P. & Ramanswamy, V. in Climate Change 2007: The Physical Science Basis — Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge Univ. Press, Cambridge, UK, New York, USA, 2007).

    Google Scholar 

  38. Haywood, J. M. & Ramaswamy, V. Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res. 103, 6043–6058 (1998).

    Article  Google Scholar 

  39. Jacobson, M. Z. Strong radiative heating due to the mixing state of black carbon. Nature 409, 695–697 (2001).

    Article  Google Scholar 

  40. Chung, S. H. & Seinfeld, J. H. Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res. 107, doi:10.1029/2001JD001397 (2002).

  41. Sato, M. et al. Global atmospheric black carbon inferred from AERONET. Proc. Natl Acad. Sci. USA 100, 6319–6324 (2003).

    Article  Google Scholar 

  42. Highwood, E. J. & Kinnersley, R. P. When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environ. Intl 32, 560–566 (2006).

    Article  Google Scholar 

  43. Koch, D. et al. Global impacts of aerosols from particular source regions and sectors. J. Geophys. Res. 112, doi:10.1029/2005JD007024 (2007).

  44. Spencer, M. T. et al. Size-resolved chemical composition of aerosol particles during a monsoonal transition period over the Indian Ocean. J. Geophys. Res. (in the press).

  45. Textor, C. et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 6, 1777–1813 (2006).

    Article  Google Scholar 

  46. Podgorny, I. A. & Ramanathan, V. A modeling study of the direct effect of aerosol over the Tropical Indian Ocean. J. Geophys. Res. 106, 24097–24105 (2001).

    Article  Google Scholar 

  47. Holben, B. N. et al. An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J. Geophys. Res. 106, 12067–12097 (2001).

    Article  Google Scholar 

  48. Dubovik, O. et al. Variability of absorption and optical properties of key aerosol types ovserved in worldwide locations. J. Atmos. Sci. 59, 590–608 (2002).

    Article  Google Scholar 

  49. Schuster, G. L., Dubovick, O., Holben, B. N., & Clothiaux, E. E. Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals. J. Geophys. Res. 110, doi:10.1029/2004JD004548 (2005).

  50. Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA 101, 423–428 (2004).

    Article  Google Scholar 

  51. Corrigan, C. E. et al. Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmos. Chem. Phys. Discuss. 7, 11429–11463 (2007).

    Article  Google Scholar 

  52. Ramana, M. V. et al. Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs. Quart. J. Royal. Met. Soc. (in the press).

  53. Stanhill, G. & Cohen, S. Global dimming: a review of the evidence for a widespread and significant reductions in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. Forest Meteorol. 107, 255–278 (2001).

    Article  Google Scholar 

  54. Wild, M. et al. From dimming to brightening: Decadal changes in solar radiation at the Earth's surface. Science 308, 847–850 (2005).

    Article  Google Scholar 

  55. Alpert, P., Kishcha, P., Kaufman, Y. J., & Schwarzbard, R. Global dimming or local dimming? Effect of urbanization on sunlight availability. Geophys. Res. Lett. 32, doi:10.1029/2005GL023320 (2005).

  56. Hansen, J. et al. Efficacy of climate forcings. J. Geophys. Res. 110, doi:10.1029/2005JD005776 (2005).

  57. Flanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. Present-day forcing and response from black carbon in snow. J. Geophys. Res. 112, doi:10.1029/2006JD008003 (2007).

  58. Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    Article  Google Scholar 

  59. Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002).

    Article  Google Scholar 

  60. Ramanathan, V. et al. Atmospheric brown clouds: impacts on South Asian climate and hydrologic cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).

    Article  Google Scholar 

  61. Lau, K.-M. & Kim, M.-K. Asian monsoon anomalies induced by aerosol direct effects. Clim. Dynam. 26, 855–864 (2006).

    Article  Google Scholar 

  62. Lau, W. M. Aerosol-hydrological cycle research: a new challenge for monsoon climate research. B. Am. Meteorol. Soc. (in the press).

  63. Wang, C. A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res. 109, doi:10.1029/2003JD004084 (2004).

  64. Meehl, G. A., Arblaster, J. M., & Collins, W. D. Effects of black carbon aerosols on the Indian monsoon. J. Climate (in the press).

  65. Chung, C. & Ramanathan, V. Weakening of N. Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Climate. 19, 2036–2045 (2006).

    Article  Google Scholar 

  66. Krishnan, R. & Ramanathan, V. Evidence of surface cooling from absorbing aerosols. J. Geophys. Res. 29, doi:10.1029/2002GL014687 (2002).

  67. Chung, S. H. & Seinfeld, J. H. Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res. 110, doi:10.1029/2004JD005441 (2005).

  68. Solomon, S. et al. (eds) Climate Change 2007: The Physical Science Basis — Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, UK, New York, USA, 2007).

    Google Scholar 

  69. Thompson, L. G. et al. Tropical glacier and ice core evidence of climate changes on annual to millenial time scales. Climatic Change 59, 137–155 (2003).

    Article  Google Scholar 

  70. Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    Article  Google Scholar 

  71. Global Outlook for Ice and Snow (United Nations Environment Program, Nairobi, Kenya, 2007).

  72. Holland, M. M., Bitz, C. M., & Tremblay, B. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. 33, doi:10.1029/2006GL028024 (2006).

  73. McConnell, J. R. et al. 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317, 1381–1384 (2007).

    Article  Google Scholar 

  74. Chung, C. & Ramanathan, V. Relationship between trends in land precipitation and tropical SST gradient. Geophys. Res. Lett. 34, doi 10.1029/2007GL030491 (2007).

  75. Rotstayn, L. D. & Lohmann, U. Tropical rainfall trends and the indirect aerosol effect. J. Climate 15, 2103–2116 (2002).

    Article  Google Scholar 

  76. Hoerling, M., Hurrell, J., & Eischeid, J. Detection and attribution of 20th century northern and southern African rainfall change. J. Climate 19, 3989–4008 (2006).

    Article  Google Scholar 

  77. Kaufman, Y. J. & Koren, I. Smoke and pollution aerosol effect on cloud cover. Science 313, 655–658 (2006).

    Article  Google Scholar 

  78. Rudich, Y., Sagi, A., & Rosenfeld, D. Influence of the Kuwait oil fires plume (1991). on the microphysical development of clouds. J. Geophys. Res. 108, doi:10.1029/2003JD003472 (2003).

  79. Zhu, A., Ramanathan, V., Li, F., & Kim, D. Dust plumes over the Pacific, Indian and Atlantic Oceans: Climatology and radiative impact. J. Geophys. Res. 112, doi:10.1029/2007JD008427 (2007).

  80. Clarke, A. D. et al. Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res. 109, doi:10.1029/2003JD004378 (2004).

  81. Prospero, J. M. & Lamb, J. P. African droughts and dust transport to the Caribbean: Climate change and implications. Science 302, 1024–1027 (2003).

    Article  Google Scholar 

  82. Rosenfeld, D., Rudich, Y., & Lahav, R. Desert dust suppressing precipitation: a possible desertification feedback loop. Proc. Natl Acad. Sci. USA 98, 5975–5980 (2001).

    Article  Google Scholar 

  83. Stith, J. L. & Ramanathan, V. The Pacific Dust Experiment (PaCDEX) Field Campaign: A summary of accomplishments during the field campaign and examples of early results. Eos Trans. AGU 88 (Fall Meeting suppl.) A13G-08 (2007).

  84. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    Article  Google Scholar 

  85. Andreae, M. O. et al. Smoking Rain Clouds over the Amazon. Science 303, 1337–1341 (2004).

    Article  Google Scholar 

  86. Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999).

    Article  Google Scholar 

  87. Crutzen, P. J. & Birks, J. W. The atmosphere after a nuclear war: twilight at noon. Ambio 11, 115–125 (1982).

    Google Scholar 

  88. Thompson, S. L., Ramaswamy, V., & Covey, C. Atmospheric effects of nuclear war aerosols in general circulation model simulations: influence of smoke optical properties. J. Geophys. Res. 92, 10942–10960 (1987).

    Article  Google Scholar 

  89. Turco, P. et al. Nuclear winter: global consequences of multiple nuclear explosions. Science 222, 1283–1292 (1983).

    Article  Google Scholar 

  90. Hansen, J. E. & Sato, M. Trends of measured climate forcing agents. Proc. Natl Acad. Sci. USA 98, 14778–14783 (2001).

    Article  Google Scholar 

  91. Jacobson, M. Z. Control of fossil-fuel particulate black carbon plus organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res. 107, doi:10.1029/2001JD001376 (2002).

  92. Bond, T. C. & Sun, H. Can reducing black carbon emissions counteract global warming? Environ. Sci. Technol. 39, 5921–5926 (2005).

    Article  Google Scholar 

  93. Smith, K. R. National burden of disease in India from indoor air pollution. Proc. Natl Acad. Sci. USA 97, 13286–13293 (2005).

    Article  Google Scholar 

  94. Sridharan, P. V. & Pachauri, R. K. Looking Back to Think Ahead: Green India 2047 New Delhi (Tata Energy Research Institute, 1998).

    Google Scholar 

  95. Metz, B., Davidson, O., Bosch, P, Dave, R. & Meyer, L. (eds) Climate Change 2007: Mitigation of Climate Change — Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge Univ. Press, Cambridge, UK, New York, USA, 2007).

    Google Scholar 

  96. Adhikary, B. et al. Characterization of the seasonal cycle of south Asian aerosols: A regional-scale modeling analysis. J. Geophys. Res. 112, doi:10.1029/2006JD008143 (2007).

  97. Ramanathan, V. & Balakrishnan, K. Reduction of Air Pollution and Global Warming by Cooking with Renewable Sources: A Controlled and Practical Experiment in Rural India (Project Surya, 2007); http://www-ramanathan.ucsd.edu/Surya-WhitePaper.pdf.

    Google Scholar 

  98. Streets, D. G. Dissecting future aerosol emissions: warming tendencies and mitigation opportunities. Climatic Change 81, 313–330 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the NSF, NOAA and NASA. We thank C. Chung, J. H. Seinfeld and G. A. Meehl for providing simulated temperature changes from their published GCM studies. We thank V. Ramaswamy, T. Bond, M. Jacobson, M. Flanner, G. Meehl and C. Wang for their valuable comments on an earlier draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ramanathan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramanathan, V., Carmichael, G. Global and regional climate changes due to black carbon. Nature Geosci 1, 221–227 (2008). https://doi.org/10.1038/ngeo156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo156

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing