Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere

Abstract

Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms and in modulating Earth’s reflectivity and climate1. How these clouds respond to climate change, in particular over land, and how they interact with the carbon cycle are poorly understood2,3. It is expected that as a consequence of rising atmospheric CO2 concentrations the plant stomata will close4,5, leading to lower latent heat fluxes and higher sensible heat fluxes. Here we show that this causes a decline in boundary-layer cloud formation in middle latitudes. This could be partly counteracted by the greater ability of a warmer atmosphere to take up water and by a growth in biomass due to CO2 fertilization6. Our results are based on a new soil–water–atmosphere–plant model supported by comprehensive observational evidence, from which we identify the dominant atmospheric responses to plant physiological processes. They emphasize the intricate connection between biological and physical aspects of the climate system and the relevance of short-term and small-scale processes in establishing this connection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the main processes and variables in the coupled surface–ABL dynamic system.
Figure 2: Diurnal variability of the coupled surface–ABL dynamic system under different scenarios.
Figure 3: Responses of the coupled surface–ABL dynamic system to rising CO2 and warmer temperatures.

Similar content being viewed by others

References

  1. Solomon, S. et al. IPCC Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007).

    Google Scholar 

  2. Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1018 (2009).

    Article  Google Scholar 

  3. Le Quéré, C., Raupach, M. R., Canadell, J. G. & Marland, G. Trends in the source and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Article  Google Scholar 

  4. Jacobs, C. M. J. & de Bruin, H. A. R. Predicting regional transpiration of elevated atmospheric CO2: Influence of the PBL-vegetation interaction. J. Appl. Meteorol. 36, 1663–1675 (1997).

    Article  Google Scholar 

  5. Sellers, P. J. et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271, 1402–1406 (2010).

    Article  Google Scholar 

  6. Niyogi, D. & Xue, Y. Soil moisture regulates the biological aspects of elevated atmospheric CO2 concentrations in a coupled atmosphere biosphere model. Glob. Planet. Change 54, 94–108 (2006).

    Article  Google Scholar 

  7. Dai, A., DelGenio, A. D. & Fung, I. Y. Clouds, precipitation and temperature range. Nature 386, 665–666 (1997).

    Article  Google Scholar 

  8. Zhang, Y. & Klein, S. K. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern great plains site. J. Atmos. Sci. 67, 2943–2959 (2010).

    Article  Google Scholar 

  9. Garcia-Carreras, L., Parker, D. J. & Marshman, J. H. What is the mechanism for the modification of convective cloud distributions by land-surface induced flows? J. Atmos. Sci. 68, 619–634 (2011).

    Article  Google Scholar 

  10. Freedman, J. M., Fitzjarrald, D. R., Moore, K. E. & Sakai, R. K. Boundary layer clouds and vegetation–atmosphere feedbacks. J. Clim. 10, 1172–1193 (2001).

    Google Scholar 

  11. Kruijt, B., Witte, J. M., Jacobs, C. M. J. & Kroon, T. Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach to the Netherlands. J. Hydrol. 349, 257–267 (2008).

    Article  Google Scholar 

  12. Beljaars, A. C. M. & Bosveld, F. C. Cabauw data for the validation of land surface parameterization schemes. J. Clim. 14, 180–196 (1997).

    Google Scholar 

  13. Angevine, W. M., Grimsdell, A. W., McKeen, A. & Warnock, J. M. Entrainment results from the Flatland boundary layer experiments. J. Geophys. Res. 103, 13689–13702 (1998).

    Article  Google Scholar 

  14. Jacobs, C. M. J. et al. Variability of annual CO2 exchange from dutch grasslands. Biogeochemistry 4, 803–816 (2007).

    Google Scholar 

  15. Baldocchi, D. The grass response. Nature 476, 160–161 (2011).

    Article  Google Scholar 

  16. Casso-Torralba, P. et al. Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer. J. Geophys. Res. 113, D12119 (2008).

    Article  Google Scholar 

  17. Joos, F. et al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob. Biogeochem. Cycles 15, 891–907 (2001).

    Article  Google Scholar 

  18. Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).

    Article  Google Scholar 

  19. Van Heerwaarden, C. C., Vilà-Guerau de Arellano, J., Gounou, A., Guichard, F. & Couvreaux, F. Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcing and feedbacks. J. Hydrometrol. 11, 1405–1422 (2010).

    Article  Google Scholar 

  20. Ek, M. B. & Mahrt, L. Daytime evolution of relative humidity at the boundary-layer top. Mon. Weath. Rev. 122, 324–341 (1994).

    Article  Google Scholar 

  21. Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the Northern high latitudes in the 21st century from the coupled carbon cycle model intercomparison project model projections. Glob. Change Biol. 16, 641–656 (2010).

    Article  Google Scholar 

  22. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  Google Scholar 

  23. Cox, P. M., Betts, R. A., Jones, C. D., Spall, A. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  Google Scholar 

  24. van Heerwaarden, C. C., Vilà-Guerau de Arellano, J. & Teuling, A. J. Land–atmosphere coupling explains the link between pan evaporation and actual evapotranspiration trends in a changing climate. Geophys. Res. Lett. 37, L21401 (2010).

    Article  Google Scholar 

  25. Ronda, R. J., de Bruin, H. A. R. & Holtslag, A. A. M. Representation of the canopy conductance in modeling the surface energy budget for low vegetation. J. Appl. Meteorol. 40, 1431–1444 (2001).

    Article  Google Scholar 

  26. Luo, Y. & Zhou, X. Soil Respiration and the Environment 307 (Elsevier, 2006).

    Google Scholar 

  27. De Bruin, H. A. R. A model for the Priestley–Taylor parameter α. J. Appl. Meteorol. 32, 572–578 (1983).

    Article  Google Scholar 

  28. McNaughton, K. G. & Spriggs, T. W. A mixed-layer model for regional evaporation. Bound. Layer Meteorol. 34, 243–262 (1986).

    Article  Google Scholar 

  29. Vilà-Guerau de Arellano, J. et al. Entrainment process of carbon dioxide in the atmospheric boundary layer. J. Geophys. Res. 109, D18110 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Royal Netherlands Meteorological Institute (KNMI), the Energy Research Center of the Netherlands (ECN), F. Bosveld (KNMI) and A. Vermeulen (ECN) for making the Cabauw data available.

Author information

Authors and Affiliations

Authors

Contributions

J.V-G.d.A. and C.C.v.H. conceived and conducted the research. J.L. contributed to the analysis of the model results. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Jordi Vilà-Guerau de Arellano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 921 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Arellano, JG., van Heerwaarden, C. & Lelieveld, J. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nature Geosci 5, 701–704 (2012). https://doi.org/10.1038/ngeo1554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1554

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing