Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mantle flow deflected by interactions between subducted slabs and cratonic keels

Abstract

Oceanic lithosphere is rapidly recycled into the mantle through subduction, an important part of the dynamic evolution of the Earth. Cratonic continental lithosphere, however, can exist for billions of years, moving coherently with the tectonic plates. At the Caribbean–South American Plate margin, a complex subduction system and continental transform fault is adjacent to the South American cratonic keel. Parallel to the transform fault plate boundary, an anomalous region of seismic anisotropy1—created when minerals become aligned during mantle flow—is observed2,3,4,5. This region of anisotropy has been attributed to stirring of the mantle by subducting slabs2,3. Here we use seismological measurements and global geodynamic models adapted to this unique region to investigate how mantle flow, induced by subduction beneath the Antilles volcanic arc, is influenced by the stiff, deep continental craton. We find that three components—a stiff cratonic keel, a weak asthenospheric layer beneath the oceans and an accurate representation of the subducted slabs globally—are required in the models to match the unusual observed seismic anisotropy in the southeast Caribbean region. We conclude that mantle flow near the plate boundary is deflected and enhanced by the keel of the South American craton, rather than by slab stirring.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic map of the southeastern Caribbean with shear-wave splitting measurements.
Figure 2: Comparison of shear-wave splitting predictions and measurements.
Figure 3: Mantle flow models for the Caribbean–South America region.

Similar content being viewed by others

References

  1. Silver, P. G. & Chan, W. W. Implications for continental structure and evolution from seismic anisotropy. Nature 335, 34–39 (1988).

    Article  Google Scholar 

  2. Russo, R. M. & Silver, E. A. Trench-parallel flow beneath the Nazca Plate from seismic anisotropy. Science 263, 1105–1111 (1994).

    Article  Google Scholar 

  3. Russo, R. M., Silver, P. G., Franke, M., Ambeh, W. B. & James, D. E. Shear-wave splitting in northeast Venezuela, Trinidad, and the eastern Caribbean. Phys. Earth Planet. Inter. 95, 251–275 (1996).

    Article  Google Scholar 

  4. Growdon, M. A., Pavlis, G. L., Niu, F., Vernon, F. & Rendon, H. Constraints on mantle flow at the Caribbean–South American plate boundary inferred from shear wave splitting. J. Geophys. Res. 114, B02303 (2009).

    Article  Google Scholar 

  5. Masy, J., Niu, F., Levander, A. & Schmitz, M. Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth Planet. Sci. Lett. 305, 396–404 (2011).

    Article  Google Scholar 

  6. Pindell, J., Cande, S., Pitman, W. C., Rowley, K. C. & Dewey, J. F. A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 155, 121–138 (1988).

    Article  Google Scholar 

  7. Perez, O. J. et al. Velocity field across the southern Caribbean plate boundary and estimates of Caribbean/South–American plate motion using GPS geodesy 1994–2000. Geophys. Res. Lett. 28, 2987–2990 (2001).

    Article  Google Scholar 

  8. Bezada, M. J., Levander, A. & Schmandt, B. Subduction in the southern Caribbean: Images from finite-frequency P wave tomography. J. Geophys. Res. 115, B12333 (2010).

    Article  Google Scholar 

  9. Miller, M. S., Levander, A., Niu, F. & Li, A. Upper mantle structure beneath the Caribbean–South American plate boundary from surface wave tomography. J. Geophys. Res. 114, B01312 (2009).

    Google Scholar 

  10. Niu, F. et al. Receiver function study of the crustal structure of the southeastern Caribbean plate boundary. J. Geophys. Res. 112, B11308 (2007).

    Article  Google Scholar 

  11. Russo, R. M., Speed, R. C., Okal, E. A., Shepherd, J. B. & Rowley, K. C. Seismicity and tectonics of the southeastern Caribbean. J. Geophys. Res 98, 14299–14319 (1993).

    Article  Google Scholar 

  12. Clark, S. et al. Eastern Venezuelan tectonics driven by lithospheric tear geodynamics, not oblique collision. Geochem. Geophys. Geosys. 9, Q11004 (2008).

    Article  Google Scholar 

  13. Long, M. & Becker, T. W. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett. 297, 341–354 (2010).

    Article  Google Scholar 

  14. Moresi, L. N. & Solomatov, V. S. Numerical investigations of 2D convection with extremely large viscosity variations. Phys. Fluid. 7, 2154–2162 (1995).

    Article  Google Scholar 

  15. Zhong, S. J., Zuber, M. T., Moresi, L. & Gurnis, M. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105, 11063–11082 (2000).

    Article  Google Scholar 

  16. Becker, T. W. & Faccenna, C. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett. 310, 453–461 (2011).

    Article  Google Scholar 

  17. Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosys. 3, Q1003 (2002).

    Article  Google Scholar 

  18. Gudmundsson, O. & Sambridge, M. A regionalized upper mantle (RUM) seismic model. J. Geophys. Res. 103, 7121–7136 (1998).

    Article  Google Scholar 

  19. Kaminski, E., Ribe, N. M. & Browaeys, J. T. D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophys. J. Int. 157, 1–9 (2004).

    Article  Google Scholar 

  20. Karato, S-i., Jung, H., Katayama, I. & Skemer, P. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Ann. Rev. Earth Planet. Sci. 36, 59–95 (2008).

    Article  Google Scholar 

  21. Becker, T. W., Chevrot, S., Schulte-Pelkum, V. & Blackman, D. K. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. J. Geophys. Res. 111, B08309 (2006).

    Article  Google Scholar 

  22. Becker, T. W., Schulte-Pelkum, V., Blackman, D. K., Kellogg, J. B. & O’Connell, R. J. Mantle flow under the western United States from shear wave splitting. Earth Planet. Sci. Lett. 247, 235–251 (2006).

    Article  Google Scholar 

  23. Ghosh, A., Becker, T. W. & Zhong, S. Effects of lateral viscosity variations on the geoid. Geophys. Res. Lett. 37, L01301 (2010).

    Google Scholar 

  24. Stadler, G. et al. The dynamics of plate tectonics and mantle flow: From local to global scales. Science 329, 1033–1038 (2010).

    Article  Google Scholar 

  25. Nataf, H-C. & Ricard, Y. 3SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling. Phys. Earth Planet. Inter. 95, 101–122 (1996).

    Article  Google Scholar 

  26. Hager, B. H. & O’Connell, R. J. A simple global model of plate dynamics and mantle convection. J. Geophys. Res. 86, 4843–4867 (1981).

    Article  Google Scholar 

  27. Ricard, Y. & Vigny, C. Mantle dynamics with induced plate tectonics. J. Geophys. Res. 94, 17543–17559 (1989).

    Article  Google Scholar 

  28. Ben Ismail, W. & Mainprice, D. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296, 145–157 (1998).

    Article  Google Scholar 

  29. Fouch, M. J., Fischer, K. M., Parmentier, E. M. & Wysession, M. E. Shear wave splitting, continental keels, and patterns of mantle flow. J. Geophys. Res. 105, 6255–6275 (2000).

    Article  Google Scholar 

  30. Engdahl, E. R., van der Hilst, R. D. & Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998).

    Google Scholar 

Download references

Acknowledgements

M.S.M. was financially supported in part by EAR-1054638 and T.W.B. was financially supported in part by EAR-0643365. We thank A. Ghosh for assistance with assembling some of the density models, IRIS for providing the broadband seismic data and geodynamics.org and code contributors for maintaining CitcomS.

Author information

Authors and Affiliations

Authors

Contributions

M.S.M. formulated the project. T.W.B. carried out numerical modelling. Both authors contributed equally to interpreting and analysing the data and to writing the paper.

Corresponding author

Correspondence to Meghan S. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M., Becker, T. Mantle flow deflected by interactions between subducted slabs and cratonic keels. Nature Geosci 5, 726–730 (2012). https://doi.org/10.1038/ngeo1553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing