Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

End-Permian ozone shield unaffected by oceanic hydrogen sulphide and methane releases

Abstract

Earth experienced repeated episodes of widespread surface and deep-ocean anoxia with a significant accumulation of sulphide-rich waters over the past two billion years1,2. The resulting massive releases of hydrogen sulphide from the oceans, together with methane from the geosphere, have been suggested as a cause for mass extinctions through destruction of the ozone shield and a lethal accumulation of hydrogen sulphide at the surface1,2,3,4. Here, we use a two-dimensional atmospheric chemistry-transport model5,6,7 with representative climate8 and atmospheric composition9 to simulate the effect of large hydrogen sulphide and methane releases at the time of the end-Permian mass extinction 251 million years ago. In our simulations, the integrity of the stratospheric ozone shield is maintained for oceanic hydrogen sulphide releases up to 15,000 Tg S yr−1, a limit far exceeding the threshold for ozone collapse identified previously1 (2,000–4,000 Tg S yr−1). Scenarios of simultaneous hydrogen sulphide and methane injections also failed to significantly deplete the Earth’s ozone shield, and generated non-lethal hydrogen sulphide concentrations (1–2 p.p.m.) at the surface. In our two-dimensional model simulations, the high photolysis environment in the tropics maintains the oxidizing capacity of the tropical troposphere, with high local hydroxyl radical concentrations, and greatly diminishes hydrogen sulphide entry into the stratosphere. We suggest that given current constraints on possible hydrogen sulphide and methane releases from anoxic oceans, and the geosphere, over the past 0.5 billion years, these gases seem unlikely to be the cause of coincident terrestrial biotic mass extinctions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulated mean atmospheric response to large H2S and CH4 releases.
Figure 2: Simulated changes in atmospheric chemistry in response to large H2S and CH4 releases.
Figure 3: Simulated changes in ozone-loss species in response to large H2S and CH4 releases.

Similar content being viewed by others

References

  1. Kump, L. R., Pavlov, A. & Arthur, M. A. Massive release of hydrogen sulphide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33, 397–400 (2005).

    Article  Google Scholar 

  2. Grice, K. et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706–709 (2005).

    Article  Google Scholar 

  3. Lamarque, J.-F., Kiehl, J. T., Shields, C. A., Boville, B. A. & Kinnison, D. E. Modeling the response to changes in tropospheric methane concentrations: Application to the Permian-Triassic boundary. Paleoceanography 21 doi:10.1029/2006PA001276 (2006).

  4. Lamarque, J.-F., Kiehl, J. T. & Orlando, J. J. Role of hydrogen sulphide in a Permian-Triassic boundary ozone collapse. Geophys. Res. Lett. 34 doi:10.1029/2006GL028384 (2007).

  5. Harwood, R. S. & Pyle, J. A. A two-dimensional mean circulation model for the atmosphere below 80 km. Q. J. R. Meteorol. Soc. 101, 723–747 (1975).

    Article  Google Scholar 

  6. Harwood, R. S. & Pyle, J. A. The dynamical behaviour of a two-dimensional model of the stratosphere. Q. J. R. Meteorol. Soc. 106, 395–420 (1980).

    Article  Google Scholar 

  7. Law, K. S. & Pyle, J. A. Modeling trace gas budgets in the troposphere. 1. Ozone and odd nitrogen. J. Geophys. Res. 98, 18377–18400 (1993).

    Article  Google Scholar 

  8. Kiehl, J. T. & Shields, C. A. Climate simulation of the latest Permian: Implications for mass extinction. Geology 33, 757–760 (2005).

    Article  Google Scholar 

  9. Berner, R. A. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta 69, 3211–3217 (2005).

    Article  Google Scholar 

  10. Benton, M. J. & Twichett, R. J. How to kill (almost) all life: The end-Permian extinction event. Trends Ecol. Evol. 18, 358–365 (2003).

    Article  Google Scholar 

  11. Wignall, P. & Twichett, R. J. Oceanic anoxia and the End Permian mass extinction. Science 272, 1155–1158 (1996).

    Article  Google Scholar 

  12. Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. 101, 12952–12956 (2004).

    Article  Google Scholar 

  13. Foster, C. B. & Afonin, S. A. Abnormal pollen grains: An outcome of deteriorating atmospheric conditions around the Permian-Triassic boundary. J. Geol. Soc. 162, 653–659 (2005).

    Article  Google Scholar 

  14. Krull, E. S. & Retallack, G. J. δ13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence for methane release. Geol. Soc. Am. Bull. 112, 1459–1472 (2000).

    Google Scholar 

  15. Berner, R. A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modelling. Proc. Natl Acad. Sci. 99, 4172–4177 (2002).

    Article  Google Scholar 

  16. Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–509 (2004).

    Article  Google Scholar 

  17. Harfoot, M. B. J., Beerling, D. J., Lomax, B. H. & Pyle, J. A. A 2-D atmospheric chemistry modelling investigation of Earth’s Phanerozoic O3 and near-surface ultraviolet radiation history. J. Geophys. Res. 112 doi:10.1029/2006JD007372 (2007).

  18. Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  19. Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843–1866 (2007).

    Article  Google Scholar 

  20. Bekki, S. & Pyle, J. A. Two-dimensional assessment of the impact of aircraft sulphur emissions on the stratospheric sulphate aerosol layer. J. Geophys. Res. 97, 15839–15847 (1992).

    Article  Google Scholar 

  21. Bhambhani, Y., Burham, R., Snydmiller, G., MacLean, I. & Martin, T. Effects of 5 ppm hydrogen sulfide inhalation on biochemical properties of skeletal muscle in exercising men. Am. Ind. Hyg. Assoc. J. 57, 464–468 (1996).

    Article  Google Scholar 

  22. Durenkamp, M., De Kok, L. J. & Kopriva, S. Adenosine 5’-phosphosulphate reductase is regulated differently in Allium cepa L. and Brassica oleracea L. upon exposure to H2S. J. Exp. Bot. 58, 1571–1579 (2007).

    Article  Google Scholar 

  23. Thompson, C. R. & Kats, G. Effects of continuous H2S fumigation on crop and forest plants. Environ. Sci. Technol. 12, 550–553 (1978).

    Article  Google Scholar 

  24. Chapman, S. A theory of upper-atmosphere ozone. Mem. R. Meteorol. Soc. 3, 103–125 (1930).

    Google Scholar 

  25. Osborn, M. T., Decoursey, R. J., Trepte, C. R., Winker, D. M. & Woods, D. C. Evolution of the Pinatubo volcanic cloud over Hampton, Virginia. Geophys. Res. Lett. 22, 1101–1104 (1995).

    Article  Google Scholar 

  26. Baran, A. J. & Foot, J. S. New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption. J. Geophys. Res. 99, 25673–25679 (1994).

    Article  Google Scholar 

  27. Rosenfield, J. E. et al. Stratospheric effects of Mount Pinatubo aerosol studied with a coupled two-dimensional model. J. Geophys. Res. 102, 3649–3670 (1997).

    Article  Google Scholar 

  28. Giannakopoulos, C. Modelling the Impact of Physical and Removal Processes on Tropospheric Chemistry. Thesis, Univ. of Cambridge (1998).

  29. Cooper, D. J. & Saltzman, E. S. Measurements of atmospheric dimethyl sulphide and carbon-disulfide in the western Atlantic boundary layer. J. Atmos. Chem. 12, 153–168 (1993).

    Article  Google Scholar 

  30. Rampino, M. R., Prokoph, A. & Adler, A. Tempo of the end-Permian event: High resolution cyclostratigraphy at the Permian-Triassic boundary. Geology 28, 643–646 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with L. Kump and financial support through an award from the Natural Environment Research Council (NER/A/S/2002/00865) and a studentship to M.B.H. (NER/S/J/2003/11963). NCAS are thanked for provision of computing resources.

Author information

Authors and Affiliations

Authors

Contributions

M.B.H. designed and conducted the model experiments and drafted sections of the manuscript, J.A.P. supervised the calculations and model modifications and D.J.B. designed the model experiments and drafted the manuscript.

Corresponding author

Correspondence to David J. Beerling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harfoot, M., Pyle, J. & Beerling, D. End-Permian ozone shield unaffected by oceanic hydrogen sulphide and methane releases. Nature Geosci 1, 247–252 (2008). https://doi.org/10.1038/ngeo154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing