Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change


The beginning of the current interglacial period, the Holocene epoch, was a critical part of the transition from glacial to interglacial climate conditions. This period, between about 12,000 and 7,000 years ago, was marked by the continued retreat of the ice sheets that had expanded through polar and temperate regions during the preceding glacial. This meltdown led to a dramatic rise in sea level, punctuated by short-lived jumps associated with catastrophic ice-sheet collapses. Tracking down which ice sheet produced specific sea-level jumps has been challenging, but two events between 8,500 and 8,200 years ago have been linked to the final drainage of glacial Lake Agassiz in north-central North America. The release of the water from this ice-dammed lake into the ocean is recorded by sea-level jumps in the Mississippi and Rhine-Meuse deltas of approximately 0.4 and 2.1 metres, respectively. These sea-level jumps can be related to an abrupt cooling in the Northern Hemisphere known as the 8.2 kyr event, and it has been suggested that the freshwater release from Lake Agassiz into the North Atlantic was sufficient to perturb the North Atlantic meridional overturning circulation. As sea-level rise on the order of decimetres to metres can now be detected with confidence and linked to climate records, it is becoming apparent that abrupt climate change during the early Holocene associated with perturbations in North Atlantic circulation required sustained freshwater release into the ocean.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Deglaciation of the Northern Hemisphere during the first half of the Holocene (largely based on ref. 12).
Figure 2: Early Holocene high-resolution palaeoclimate and relative sea-level records.
Figure 3: Modelled sea-level fingerprint31 of the final Lake Agassiz drainage compared with relative sea-level records.


  1. 1

    Fleming, K. et al. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet. Sci. Lett. 163, 327–342 (1998).

    Article  Google Scholar 

  2. 2

    Stanford, J. D. et al. Sea-level probability for the last deglaciation: A statistical analysis of far-field records. Global Planet. Change 79, 193–203 (2011).

    Article  Google Scholar 

  3. 3

    Pfeffer, W. T., Harper, J. T. & O'Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321, 1340–1343 (2008).

    Article  Google Scholar 

  4. 4

    PALSEA (PALeo SEA level working group). The sea-level conundrum: case studies from palaeo-archives. J. Quat. Sci. 25, 19–25 (2010).

  5. 5

    Bard, E., Hamelin, B. & Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327, 1235–1237 (2010).

    Article  Google Scholar 

  6. 6

    Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  7. 7

    Carlson, A. E. et al. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nature Geosci. 1, 620–624 (2008).

    Article  Google Scholar 

  8. 8

    Smith, D. E., Harrison, S., Firth, C. R. & Jordan, J. T. The early Holocene sea level rise. Quat. Sci. Rev. 30, 1846–1860 (2011).

    Article  Google Scholar 

  9. 9

    Engelhart, S. E., Peltier, W. R. & Horton, B. P. Holocene relative sea-level changes and glacial isostatic adjustment of the U. S. Atlantic coast. Geology 39, 751–754 (2011).

    Article  Google Scholar 

  10. 10

    Shennan, I. & Horton, B. Holocene land- and sea-level changes in Great Britain. J. Quat. Sci. 17, 511–526 (2002).

    Article  Google Scholar 

  11. 11

    Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nature Geosci. 2, 471–478 (2009).

    Article  Google Scholar 

  12. 12

    Dyke, A. S. in Quaternary Glaciations — Extent and Chronology. Part II: North America (eds J. Ehlers & P. L. Gibbard) 373–424 (Elsevier, 2004).

    Google Scholar 

  13. 13

    Licciardi, J. M., Clark, P. U., Jenson, J. W. & MacAyeal, D. R. Deglaciation of a soft-bedded Laurentide Ice Sheet. Quat. Sci. Rev. 17, 427–448 (1998).

    Article  Google Scholar 

  14. 14

    Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  15. 15

    Mackintosh, A. et al. Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geosci. 4, 195–202 (2011).

    Article  Google Scholar 

  16. 16

    Hall, B. L. Holocene glacial history of Antarctica and the sub-Antarctic islands. Quat. Sci. Rev. 28, 2213–2230 (2009).

    Article  Google Scholar 

  17. 17

    Leverington, D. W., Mann, J. D. & Teller, J. T. Changes in the bathymetry and volume of glacial Lake Agassiz between 9200 and 7700 14C yr B.P. Quat. Res. 57, 244–252 (2002).

    Article  Google Scholar 

  18. 18

    Alley, R. B. Wally was right: Predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change. Annu. Rev. Earth Planet. Sci. 35, 241–272 (2007).

    Article  Google Scholar 

  19. 19

    Wiersma, A., Renssen, H., Goosse, H. & Fichefet, T. Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model. Clim. Dyn. 27, 831–849 (2006).

    Article  Google Scholar 

  20. 20

    LeGrande, A. N. & Schmidt, G. A. Ensemble, water isotope-enabled, coupled general circulation modeling insights into the 8.2 ka event. Paleoceanography 23, PA3207 (2008).

    Article  Google Scholar 

  21. 21

    Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J.-M. & Grachev, A. M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quat. Sci. Rev. 26, 1212–1222 (2007).

    Article  Google Scholar 

  22. 22

    Barber, D. C. et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999).

    Article  Google Scholar 

  23. 23

    Törnqvist, T. E., Bick, S. J., González, J. L., Van der Borg, K. & De Jong, A. F. M. Tracking the sea-level signature of the 8.2 ka cooling event: New constraints from the Mississippi Delta. Geophys. Res. Lett. 31, L23309 (2004).

    Article  Google Scholar 

  24. 24

    Thomas, E. R. et al. The 8.2 ka event from Greenland ice cores. Quat. Sci. Rev. 26, 70–81 (2007).

    Article  Google Scholar 

  25. 25

    Teller, J. T., Leverington, D. W. & Mann, J. D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quat. Sci. Rev. 21, 879–887 (2002).

    Article  Google Scholar 

  26. 26

    Ellison, C. R. W., Chapman, M. R. & Hall, I. R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, 1929–1932 (2006).

    Article  Google Scholar 

  27. 27

    Cheng, H. et al. Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 37, 1007–1010 (2009).

    Article  Google Scholar 

  28. 28

    Daley, T. J. et al. The 8200 yr BP cold event in stable isotope records from the North Atlantic region. Global Planet. Change 79, 288–302 (2011).

    Article  Google Scholar 

  29. 29

    Hijma, M. P. & Cohen, K. M. Timing and magnitude of the sea-level jump preluding the 8200 yr event. Geology 38, 275–278 (2010).

    Article  Google Scholar 

  30. 30

    Li, Y.-X., Törnqvist, T. E., Nevitt, J. M. & Kohl, B. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago. Earth Planet. Sci. Lett. 315–316, 41–50 (2012).

    Article  Google Scholar 

  31. 31

    Kendall, R. A., Mitrovica, J. X., Milne, G. A., Törnqvist, T. E. & Li, Y. The sea-level fingerprint of the 8.2 ka climate event. Geology 36, 423–426 (2008).

    Article  Google Scholar 

  32. 32

    Gregoire, L. J., Payne, A. J. & Valdes, P. J. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487, 219–222 (2012).

    Article  Google Scholar 

  33. 33

    Clarke, G. K. C., Leverington, D. W., Teller, J. T. & Dyke, A. S. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quat. Sci. Rev. 23, 389–407 (2004).

    Article  Google Scholar 

  34. 34

    Fleitmann, D. et al. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography 23, PA1102 (2008).

    Article  Google Scholar 

  35. 35

    Yu, S.-Y. et al. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago. Science 328, 1262–1266 (2010).

    Article  Google Scholar 

  36. 36

    Yu, S.-Y., Berglund, B. E., Sandgren, P. & Lambeck, K. Evidence for a rapid sea-level rise 7600 yr ago. Geology 35, 891–894 (2007).

    Article  Google Scholar 

  37. 37

    Van de Plassche, O., Makaske, B., Hoek, W. Z., Konert, M. & Van der Plicht, J. Mid-Holocene water-level changes in the lower Rhine-Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution. Neth. J. Geosci. 89, 3–20 (2010).

    Google Scholar 

  38. 38

    Farrell, W. E. & Clark, J. A. On postglacial sea level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).

    Article  Google Scholar 

  39. 39

    Conrad, C. P. & Hager, B. H. Spatial variations in the rate of sea level rise caused by the present-day melting of glaciers and ice sheets. Geophys. Res. Lett. 24, 1503–1506 (1997).

    Article  Google Scholar 

  40. 40

    Mitrovica, J. X., Tamisiea, M. E., Davis, J. L. & Milne, G. A. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–1029 (2001).

    Article  Google Scholar 

  41. 41

    Van de Plassche, O. in Sea-Level Research: a Manual for the Collection and Evaluation of Data (ed. O. van de Plassche) 1–26 (Geo Books, 1986).

    Google Scholar 

  42. 42

    Uehara, K., Scourse, J. D., Horsburgh, K. J., Lambeck, K. & Purcell, A. P. Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present. J. Geophys. Res. 111, C09025 (2006).

    Article  Google Scholar 

  43. 43

    Hill, D. F., Griffiths, S. D., Peltier, W. R., Horton, B. P. & Törnqvist, T. E. High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. J. Geophys. Res. 116, C10014 (2011).

    Article  Google Scholar 

  44. 44

    Yin, J., Schlesinger, M. E. & Stouffer, R. J. Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geosci. 2, 262–266 (2009).

    Article  Google Scholar 

  45. 45

    Meehl, G. A. et al. in Climate Change 2007. The Physical Science Basis (eds S. Solomon et al.) 747–845 (Cambridge Univ. Press, 2007).

    Google Scholar 

  46. 46

    Wu, P. & Van der Wal, W. Postglacial sealevels on a spherical, self-gravitating viscoelastic earth: effects of lateral viscosity variations in the upper mantle on the inference of viscosity contrasts in the lower mantle. Earth Planet. Sci. Lett. 211, 57–68 (2003).

    Article  Google Scholar 

  47. 47

    Vinther, B. M. et al. A synchronized dating of three Greenland ice cores throughout the Holocene. J. Geophys. Res. 111, D13102 (2006).

    Article  Google Scholar 

  48. 48

    Törnqvist, T. E. et al. Deciphering Holocene sea-level history on the U. S. Gulf Coast: A high-resolution record from the Mississippi Delta. Geol. Soc. Am. Bull. 116, 1026–1039 (2004).

    Article  Google Scholar 

  49. 49

    Cronin, T. M. et al. Rapid sea level rise and ice sheet response to 8,200-year climate event. Geophys. Res. Lett. 34, L20603 (2007).

    Article  Google Scholar 

  50. 50

    Kopp, R. E. et al. The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim. Change 103, 619–625 (2010).

    Article  Google Scholar 

Download references


This work has benefited from funding provided by the US National Science Foundation (grants OCE-0601814 and EAR-0719179), the US Department of Energy (through the National Institute for Climatic Change Research Coastal Center) and Tulane's Oliver Fund. Discussions with numerous colleagues have been of great value; we specifically mention the encouragement provided by M. Siddall. This is a contribution to the PALSEA program and IGCP project 588.

Author information



Corresponding author

Correspondence to Torbjörn E. Törnqvist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Törnqvist, T., Hijma, M. Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change. Nature Geosci 5, 601–606 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing