Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating

Abstract

Long-runout landslides are debris flows or avalanches that travel much farther than expected. They apparently exhibit friction coefficients much lower than either the static or sliding values that are generally accepted for geologic materials. Many friction-reduction mechanisms have been proposed for such landslides observed on Earth and Mars. Here we analyse images from the Cassini mission and report numerous long-runout landslides on Iapetus, an icy satellite of exceptional topographic relief. Its extremely cold, airless surface provides an excellent laboratory for studying long-runout landslides, as influence by trapped atmosphere or groundwater—two proposed friction-reduction mechanisms—is negligible. We use the ratio of drop height to runout length as an approximation for the friction coefficient of landslide material. We find that on Iapetus this ratio falls between 0.1 and 0.3, but does not decrease with increasing length as seen on Earth and Mars. We show that this lack of dependence is consistent with localized frictional heating in ice rubble such that sliding surfaces are slippery. Friction along tectonic faults on icy bodies may be similarly reduced.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Example blocky landslides on Iapetus.
Figure 2: Example lobate landslides on Iapetus.
Figure 3: Landslide modification of Iapetus’s equatorial ridge.
Figure 4: Stereo-derived DEMs of Iapetus’s surface.
Figure 5: Iapetus landslide mobilities in comparison.

References

  1. Hsü, K. J. Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol. Soc. Am. Bull. 86, 129–140 (1975).

    Article  Google Scholar 

  2. De Blasio, F. V. Introduction to the Physics of Landslides (Springer, 2011).

    Book  Google Scholar 

  3. Lucchitta, B. K. Landslides in Valles Marineris, Mars. J. Geophys. Res. 84, 8097–8113 (1979).

    Article  Google Scholar 

  4. Lucchitta, B. K. Valles Marineris, Mars—Wet debris flows and ground ice. Icarus 72, 411–429 (1987).

    Article  Google Scholar 

  5. McEwen, A. S. Mobility of large rock avalanches: Evidence from Valles Marineris, Mars. Geology 17, 1111–1114 (1989).

    Article  Google Scholar 

  6. Quantin, C., Allemand, P. & Delacourt, C. Morphology and geometry of Valles Marineris landslides. Planet. Space Sci. 52, 1011–1022 (2004).

    Article  Google Scholar 

  7. Shreve, R. L. Sherman landslide, Alaska. Science 154, 1639–1643 (1966).

    Article  Google Scholar 

  8. Shreve, R. L. The Blackhawk landslide. Spec. Pap. Geol. Soc. Am. 108, 1–47 (1968).

    Google Scholar 

  9. Legros, F. The mobility of long-runout landslides. Eng. Geol. 63, 301–331 (2002).

    Article  Google Scholar 

  10. Johnson, B. in Rockslides and Avalanches, 1, Natural Phenomena (ed. Voight, B.) 481–504 (Elsevier Science, 1978).

    Book  Google Scholar 

  11. Harrison, K. P. & Grimm, R. E. Rheological constraints on martian landslides. Icarus 163, 347–362 (2003).

    Article  Google Scholar 

  12. De Blasio, F. V. Landslides in Valles Marineris (Mars): A possible role of basal lubrication by sub-surface ice. Planet. Space Sci. 59, 1384–1392 (2011).

    Article  Google Scholar 

  13. Erismann, T. H. Mechanisms of large landslides. Rock Mech. 12, 15–46 (1979).

    Article  Google Scholar 

  14. De Blasio, F. V. & Elverhøi, A. A model for frictional melt production beneath large rock avalanches. J. Geophys. Res. 113, F02014 (2008).

    Article  Google Scholar 

  15. Weidinger, J. T. & Korup, O. Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India—Implications for extreme events in mountain relief destruction. Geomorphology 103, 57–65 (2009).

    Article  Google Scholar 

  16. Han, R., Hirose, T., Shimamoto, T., Lee, Y. & Ando, J. Granular nanoparticles lubricate faults during seismic slip. Geology 39, 599–602 (2011).

    Article  Google Scholar 

  17. Davis, T. R. H. Spreading of rock avalanche debris by mechanical fluidization. Rock Mech. Rock Eng. 15, 9–24 (1982).

    Article  Google Scholar 

  18. Campbell, C. S., Cleary, P. W. & Hopkins, M. J. Large-scale landslide simulations: Global deformation, velocities and basal friction. J. Geophys. Res. 100, 8267–8283 (1995).

    Article  Google Scholar 

  19. Melosh, H. J. Acoustic fluidization—A new geologic process? J. Geophys. Res. 84, 7513–7520 (1979).

    Article  Google Scholar 

  20. Melosh, H. J. The physics of very large landslides. Acta Mech. 64, 89–99 (1986).

    Article  Google Scholar 

  21. Collins, G. S. & Melosh, H. J. Acoustic fluidization and the extraordinary mobility of sturzstroms. J. Geophys. Res. 108, 2473–2486 (2003).

    Google Scholar 

  22. Kleinhans, M. G., Markies, H., de Vet, S. J., in’t Veld, A. C. & Postema, F. N. Static and dynamic angles of repose in loose granular materials under reduced gravity. J. Geophys. Res. 116, E11004 (2011).

    Article  Google Scholar 

  23. Lajeunesse, E. et al. New insights on the runout of large landslides in the Valles-Marineris Canyons, Mars. Geophys. Res. Lett. 33, L04403 (2006).

    Article  Google Scholar 

  24. Staron, L. & Lajeunesse, E. Understanding how the volume affects the mobility of dry debris flows. Geophys. Res. Lett. 36, L12402 (2009).

    Article  Google Scholar 

  25. Holsapple, K. A. On the flow and fluidization of granular materials: Applications to large lunar craters, cliff collapses, and asteroid shapes. 42nd Lunar Planet. Sci. Conf. abs. #2612 (2011).

  26. Giese, B. et al. The topography of Iapetus’ leading side. Icarus 193, 359–371 (2008).

    Article  Google Scholar 

  27. Porco, C. C. et al. Cassini imaging science: Initial results on Phoebe and Iapetus. Science 307, 1237–1242 (2005).

    Article  Google Scholar 

  28. Schenk, P. M. AAS/Division for Planetary Sciences Meeting 42 abs. #9.16 (2010).

  29. Singer, K. N. & McKinnon, W. B. Tectonics on Iapetus: Despinning, respinning, or something completely different? Icarus 216, 198–211 (2011).

    Article  Google Scholar 

  30. Spencer, J. R. & Denk, T. Formation of Iapetus’ extreme albedo dichotomy by exogenically triggered thermal ice migration. Science 327, 432–435 (2010).

    Article  Google Scholar 

  31. Schenk, P. M. & Bulmer, M. H. Origin of mountains on Io by thrust faulting and large-scale mass movements. Science 279, 1514–1517 (1998).

    Article  Google Scholar 

  32. Chuang, F. C. & Greeley, R. Large mass movements on Callisto. J. Geophys. Res. 105, 20227–20244 (2000).

    Article  Google Scholar 

  33. Hampton, M. A. & Locat, J. Submarine landslides. Rev. Geophys. 34, 33–59 (1996).

    Article  Google Scholar 

  34. Jaeger, J. C., Cook, N. G. W. & Zimmerman, R. W. Fundamentals of Rock Mechanics Ch. 3 (Wiley–Blackwell, 2007).

    Google Scholar 

  35. Beeman, M., Durham, W. B. & Kirby, S. H. Friction of ice. J. Geophys. Res. 93, 7625–7633 (1988).

    Article  Google Scholar 

  36. Kimura, J. et al. Sublimation’s impact on temporal change of albedo dichotomy on Iapetus. Icarus 214, 596–605 (2011).

    Article  Google Scholar 

  37. Maeno, N. & Arakawa, M. Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering. J. Appl. Phys. 95, 134–139 (2004).

    Article  Google Scholar 

  38. Kietzig, A-M., Hatzikiriakos, S. G. & Englezos, P. Physics of ice friction. J. Appl. Phys. 107, 081101 (2010).

    Article  Google Scholar 

  39. Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471, 494–498 (2011).

    Article  Google Scholar 

  40. Goldsby, D. L. & Tullis, T. E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science 334, 216–218 (2011).

    Article  Google Scholar 

  41. Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford Univ. Press, 1999).

    Google Scholar 

  42. Rosenberg, R. Why is ice slippery? Phys. Today 58, 50–55 (2005).

    Article  Google Scholar 

  43. Dones, L. et al. in Saturn from Cassini-Huygens (eds Dougherty, M. K., Esposito, L. W. & Krimigis, S. M.) 613–635 (Springer, 2009).

    Book  Google Scholar 

  44. Dombard, A. J., Cheng, A. F., McKinnon, W. B. & Kay, J. P. Delayed formation of the equatorial ridge on Iapetus from a sub-satellite created in a giant impact. J. Geophys. Res. 117, 03002 (2012).

    Article  Google Scholar 

  45. Schenk, P. M., Wilson, R. R. & Davies, A. G. Shield volcano topography and the rheology of lava flows on Io. Icarus 169, 98–110 (2004).

    Article  Google Scholar 

  46. Moore, J. M. et al. Mass movement and landform degradation on the icy Galilean satellites: Results of the Galileo nominal mission. Icarus 140, 294–312 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NASA Planetary Geology and Geophysics Program (W.B.M.) and Cassini Data Analysis Program (J.M.M. and P.M.S.) and by a NESS Fellowship to K.N.S. We sincerely thank A. Lucas for comments that substantially improved this paper, and dedicate this work to the memory of R. Greeley.

Author information

Authors and Affiliations

Authors

Contributions

K.N.S. collected the landslide data and along with W.B.M. compiled the literature data and wrote the paper. P.M.S. created and supplied the topography data used here and along with J.M.M. contributed to discussion of the data and revisions to the manuscript.

Corresponding author

Correspondence to Kelsi N. Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 20519 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singer, K., McKinnon, W., Schenk, P. et al. Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nature Geosci 5, 574–578 (2012). https://doi.org/10.1038/ngeo1526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1526

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing