Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating

Abstract

Long-runout landslides are debris flows or avalanches that travel much farther than expected. They apparently exhibit friction coefficients much lower than either the static or sliding values that are generally accepted for geologic materials. Many friction-reduction mechanisms have been proposed for such landslides observed on Earth and Mars. Here we analyse images from the Cassini mission and report numerous long-runout landslides on Iapetus, an icy satellite of exceptional topographic relief. Its extremely cold, airless surface provides an excellent laboratory for studying long-runout landslides, as influence by trapped atmosphere or groundwater—two proposed friction-reduction mechanisms—is negligible. We use the ratio of drop height to runout length as an approximation for the friction coefficient of landslide material. We find that on Iapetus this ratio falls between 0.1 and 0.3, but does not decrease with increasing length as seen on Earth and Mars. We show that this lack of dependence is consistent with localized frictional heating in ice rubble such that sliding surfaces are slippery. Friction along tectonic faults on icy bodies may be similarly reduced.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Example blocky landslides on Iapetus.
Figure 2: Example lobate landslides on Iapetus.
Figure 3: Landslide modification of Iapetus’s equatorial ridge.
Figure 4: Stereo-derived DEMs of Iapetus’s surface.
Figure 5: Iapetus landslide mobilities in comparison.

References

  1. 1

    Hsü, K. J. Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol. Soc. Am. Bull. 86, 129–140 (1975).

  2. 2

    De Blasio, F. V. Introduction to the Physics of Landslides (Springer, 2011).

  3. 3

    Lucchitta, B. K. Landslides in Valles Marineris, Mars. J. Geophys. Res. 84, 8097–8113 (1979).

  4. 4

    Lucchitta, B. K. Valles Marineris, Mars—Wet debris flows and ground ice. Icarus 72, 411–429 (1987).

  5. 5

    McEwen, A. S. Mobility of large rock avalanches: Evidence from Valles Marineris, Mars. Geology 17, 1111–1114 (1989).

  6. 6

    Quantin, C., Allemand, P. & Delacourt, C. Morphology and geometry of Valles Marineris landslides. Planet. Space Sci. 52, 1011–1022 (2004).

  7. 7

    Shreve, R. L. Sherman landslide, Alaska. Science 154, 1639–1643 (1966).

  8. 8

    Shreve, R. L. The Blackhawk landslide. Spec. Pap. Geol. Soc. Am. 108, 1–47 (1968).

  9. 9

    Legros, F. The mobility of long-runout landslides. Eng. Geol. 63, 301–331 (2002).

  10. 10

    Johnson, B. in Rockslides and Avalanches, 1, Natural Phenomena (ed. Voight, B.) 481–504 (Elsevier Science, 1978).

  11. 11

    Harrison, K. P. & Grimm, R. E. Rheological constraints on martian landslides. Icarus 163, 347–362 (2003).

  12. 12

    De Blasio, F. V. Landslides in Valles Marineris (Mars): A possible role of basal lubrication by sub-surface ice. Planet. Space Sci. 59, 1384–1392 (2011).

  13. 13

    Erismann, T. H. Mechanisms of large landslides. Rock Mech. 12, 15–46 (1979).

  14. 14

    De Blasio, F. V. & Elverhøi, A. A model for frictional melt production beneath large rock avalanches. J. Geophys. Res. 113, F02014 (2008).

  15. 15

    Weidinger, J. T. & Korup, O. Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India—Implications for extreme events in mountain relief destruction. Geomorphology 103, 57–65 (2009).

  16. 16

    Han, R., Hirose, T., Shimamoto, T., Lee, Y. & Ando, J. Granular nanoparticles lubricate faults during seismic slip. Geology 39, 599–602 (2011).

  17. 17

    Davis, T. R. H. Spreading of rock avalanche debris by mechanical fluidization. Rock Mech. Rock Eng. 15, 9–24 (1982).

  18. 18

    Campbell, C. S., Cleary, P. W. & Hopkins, M. J. Large-scale landslide simulations: Global deformation, velocities and basal friction. J. Geophys. Res. 100, 8267–8283 (1995).

  19. 19

    Melosh, H. J. Acoustic fluidization—A new geologic process? J. Geophys. Res. 84, 7513–7520 (1979).

  20. 20

    Melosh, H. J. The physics of very large landslides. Acta Mech. 64, 89–99 (1986).

  21. 21

    Collins, G. S. & Melosh, H. J. Acoustic fluidization and the extraordinary mobility of sturzstroms. J. Geophys. Res. 108, 2473–2486 (2003).

  22. 22

    Kleinhans, M. G., Markies, H., de Vet, S. J., in’t Veld, A. C. & Postema, F. N. Static and dynamic angles of repose in loose granular materials under reduced gravity. J. Geophys. Res. 116, E11004 (2011).

  23. 23

    Lajeunesse, E. et al. New insights on the runout of large landslides in the Valles-Marineris Canyons, Mars. Geophys. Res. Lett. 33, L04403 (2006).

  24. 24

    Staron, L. & Lajeunesse, E. Understanding how the volume affects the mobility of dry debris flows. Geophys. Res. Lett. 36, L12402 (2009).

  25. 25

    Holsapple, K. A. On the flow and fluidization of granular materials: Applications to large lunar craters, cliff collapses, and asteroid shapes. 42nd Lunar Planet. Sci. Conf. abs. #2612 (2011).

  26. 26

    Giese, B. et al. The topography of Iapetus’ leading side. Icarus 193, 359–371 (2008).

  27. 27

    Porco, C. C. et al. Cassini imaging science: Initial results on Phoebe and Iapetus. Science 307, 1237–1242 (2005).

  28. 28

    Schenk, P. M. AAS/Division for Planetary Sciences Meeting 42 abs. #9.16 (2010).

  29. 29

    Singer, K. N. & McKinnon, W. B. Tectonics on Iapetus: Despinning, respinning, or something completely different? Icarus 216, 198–211 (2011).

  30. 30

    Spencer, J. R. & Denk, T. Formation of Iapetus’ extreme albedo dichotomy by exogenically triggered thermal ice migration. Science 327, 432–435 (2010).

  31. 31

    Schenk, P. M. & Bulmer, M. H. Origin of mountains on Io by thrust faulting and large-scale mass movements. Science 279, 1514–1517 (1998).

  32. 32

    Chuang, F. C. & Greeley, R. Large mass movements on Callisto. J. Geophys. Res. 105, 20227–20244 (2000).

  33. 33

    Hampton, M. A. & Locat, J. Submarine landslides. Rev. Geophys. 34, 33–59 (1996).

  34. 34

    Jaeger, J. C., Cook, N. G. W. & Zimmerman, R. W. Fundamentals of Rock Mechanics Ch. 3 (Wiley–Blackwell, 2007).

  35. 35

    Beeman, M., Durham, W. B. & Kirby, S. H. Friction of ice. J. Geophys. Res. 93, 7625–7633 (1988).

  36. 36

    Kimura, J. et al. Sublimation’s impact on temporal change of albedo dichotomy on Iapetus. Icarus 214, 596–605 (2011).

  37. 37

    Maeno, N. & Arakawa, M. Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering. J. Appl. Phys. 95, 134–139 (2004).

  38. 38

    Kietzig, A-M., Hatzikiriakos, S. G. & Englezos, P. Physics of ice friction. J. Appl. Phys. 107, 081101 (2010).

  39. 39

    Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471, 494–498 (2011).

  40. 40

    Goldsby, D. L. & Tullis, T. E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science 334, 216–218 (2011).

  41. 41

    Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford Univ. Press, 1999).

  42. 42

    Rosenberg, R. Why is ice slippery? Phys. Today 58, 50–55 (2005).

  43. 43

    Dones, L. et al. in Saturn from Cassini-Huygens (eds Dougherty, M. K., Esposito, L. W. & Krimigis, S. M.) 613–635 (Springer, 2009).

  44. 44

    Dombard, A. J., Cheng, A. F., McKinnon, W. B. & Kay, J. P. Delayed formation of the equatorial ridge on Iapetus from a sub-satellite created in a giant impact. J. Geophys. Res. 117, 03002 (2012).

  45. 45

    Schenk, P. M., Wilson, R. R. & Davies, A. G. Shield volcano topography and the rheology of lava flows on Io. Icarus 169, 98–110 (2004).

  46. 46

    Moore, J. M. et al. Mass movement and landform degradation on the icy Galilean satellites: Results of the Galileo nominal mission. Icarus 140, 294–312 (1999).

Download references

Acknowledgements

This work was supported by grants from the NASA Planetary Geology and Geophysics Program (W.B.M.) and Cassini Data Analysis Program (J.M.M. and P.M.S.) and by a NESS Fellowship to K.N.S. We sincerely thank A. Lucas for comments that substantially improved this paper, and dedicate this work to the memory of R. Greeley.

Author information

K.N.S. collected the landslide data and along with W.B.M. compiled the literature data and wrote the paper. P.M.S. created and supplied the topography data used here and along with J.M.M. contributed to discussion of the data and revisions to the manuscript.

Correspondence to Kelsi N. Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 20519 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singer, K., McKinnon, W., Schenk, P. et al. Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nature Geosci 5, 574–578 (2012) doi:10.1038/ngeo1526

Download citation

Further reading

  • Landslides on Charon

    • Chloe B. Beddingfield
    • , Ross A. Beyer
    • , Kelsi N. Singer
    • , William B. McKinnon
    • , Kirby Runyon
    • , Will Grundy
    • , S. Alan Stern
    • , Veronica Bray
    • , Rajani Dhingra
    • , Jeffrey M. Moore
    • , K. Ennico
    • , C.B. Olkin
    • , Paul Schenk
    • , John R. Spencer
    • , H.A. Weaver
    •  & L.A. Young

    Icarus (2020)

  • Landslides on Ceres: Inferences Into Ice Content and Layering in the Upper Crust

    • H. T. Chilton
    • , B. E. Schmidt
    • , K. Duarte
    • , K. L. Ferrier
    • , K. H. G. Hughson
    • , J. E. C. Scully
    • , J. J. Wray
    • , H. G. Sizemore
    • , A. Nathues
    • , T. Platz
    • , N. Schorghofer
    • , P. M. Schenk
    • , M. E. Landis
    • , M. Bland
    • , S. Byrne
    • , C. T. R. Russell
    •  & C. A. Raymond

    Journal of Geophysical Research: Planets (2019)

  • Geologic Landforms and Chronostratigraphic History of Charon as Revealed by a Hemispheric Geologic Map

    • Stuart J. Robbins
    • , Ross A. Beyer
    • , John R. Spencer
    • , William M. Grundy
    • , Oliver L. White
    • , Kelsi N. Singer
    • , Jeffrey M. Moore
    • , Cristina M. Dalle Ore
    • , William B. McKinnon
    • , Carey M. Lisse
    • , Kirby Runyon
    • , Chloe B. Beddingfield
    • , Paul Schenk
    • , Orkan M. Umurhan
    • , Dale P. Cruikshank
    • , Tod R. Lauer
    • , Veronica J. Bray
    • , Richard P. Binzel
    • , Marc W. Buie
    • , Bonnie J. Buratti
    • , Andrew F. Cheng
    • , Ivan R. Linscott
    • , Dennis C. Reuter
    • , Mark R. Showalter
    • , Leslie A. Young
    • , Catherine B. Olkin
    • , Kimberly S. Ennico
    • , Harold A. Weaver
    •  & S. Alan Stern

    Journal of Geophysical Research: Planets (2019)

  • Longitudinal ridges imparted by high-speed granular flow mechanisms in martian landslides

    • Giulia Magnarini
    • , Thomas M. Mitchell
    • , Peter M. Grindrod
    • , Liran Goren
    •  & Harrison H. Schmitt

    Nature Communications (2019)

  • The Rocky‐Like Behavior of Cometary Landslides on 67P/Churyumov‐Gerasimenko

    • Alice Lucchetti
    • , Luca Penasa
    • , Maurizio Pajola
    • , Matteo Massironi
    • , Maria Teresa Brunetti
    • , Gabriele Cremonese
    • , Nilda Oklay
    • , Jean‐Baptiste Vincent
    • , Stefano Mottola
    • , Sonia Fornasier
    • , Holger Sierks
    • , Giampiero Naletto
    • , Philippe L. Lamy
    • , Rafael Rodrigo
    • , Detlef Koschny
    • , Bjorn Davidsson
    • , Cesare Barbieri
    • , Maria Antonietta Barucci
    • , Jean‐Loup Bertaux
    • , Ivano Bertini
    • , Dennis Bodewits
    • , Pamela Cambianica
    • , Vania Da Deppo
    • , Stefano Debei
    • , Mariolino De Cecco
    • , Jacob Deller
    • , Sabrina Ferrari
    • , Francesca Ferri
    • , Marco Franceschi
    • , Marco Fulle
    • , Pedro Gutiérrez
    • , Carsten Güttler
    • , Wing‐H. Ip
    • , Uwe Keller
    • , Luisa Lara
    • , Monica Lazzarin
    • , Jose Lopez Moreno
    • , Francesco Marzari
    •  & Cecilia Tubiana

    Geophysical Research Letters (2019)