Possible links between long-term geomagnetic variations and whole-mantle convection processes

  • A Corrigendum to this article was published on 29 July 2012


The Earth's internal magnetic field varies on timescales of months to billions of years. The field is generated by convection in the liquid outer core, which in turn is influenced by the heat flowing from the core into the base of the overlying mantle. Much of the magnetic field's variation is thought to be stochastic, but over very long timescales, this variability may be related to changes in heat flow associated with mantle convection processes. Over the past 500 Myr, correlations between palaeomagnetic behaviour and surface processes were particularly striking during the middle to late Mesozoic era, beginning about 180 Myr ago. Simulations of the geodynamo suggest that transitions from periods of rapid polarity reversals to periods of prolonged stability — such as occurred between the Middle Jurassic and Middle Cretaceous periods — may have been triggered by a decrease in core–mantle boundary heat flow either globally or in equatorial regions. This decrease in heat flow could have been linked to reduced mantle-plume-head production at the core–mantle boundary, an episode of true polar wander, or a combination of the two.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Records of geomagnetic polarity reversal frequency and dipole moment since the Cambrian period.
Figure 2: Representative cases of a mantle flow model showing the effects of subducted slabs on core–mantle boundary (CMB) heat flow.
Figure 3: Average reversal frequency and eruption ages20 of large igneous provinces (LIPs; offset by +50 Myr) that have not yet been subducted.
Figure 4: True polar wander (TPW) as produced by a mantle flow model (case 2) subject to two major perturbations in subduction flux which affected the fractional CMB heat flow in the equatorial region.
Figure 5: Analysis of possible effects of observed TPW on equatorial CMB heat flow (and hence reversal frequency).


  1. 1

    Jonkers, A. R. T. Discrete scale invariance connects geodynamo timescales. Geophys. J. Int. 171, 581–593 (2007).

  2. 2

    Hulot, G. & Gallet, Y. Do superchrons occur without any palaeomagnetic warning? Earth Planet. Sci. Lett. 210, 191–201 (2003).

  3. 3

    Jonkers, A. R. T. Long-range dependence in the Cenozoic reversal record. Phys. Earth Planet. Inter. 135, 253–266 (2003).

  4. 4

    Jones, G. M. Thermal interaction of the core and the mantle and long-term behavior of the geomagnetic field. J. Geophys Res 82, 1703–1709 (1977).

  5. 5

    Mcfadden, P. L. & Merrill, R. T. Lower mantle convection and geomagnetism. J. Geophys. Res. 89, 3354–3362 (1984).

  6. 6

    Biggin, A. J. & Thomas, D. N. Analysis of long-term variations in the geomagnetic poloidal field intensity and evaluation of their relationship with global geodynamics. Geophys. J. Int. 152, 392–415 (2003).

  7. 7

    Courtillot, V. & Besse, J. Magnetic-field reversals, polar wander, and core-mantle coupling. Science 237, 1140–1147 (1987).

  8. 8

    Courtillot, V. & Olson, P. Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events. Earth Planet. Sci. Lett. 260, 495–504 (2007).

  9. 9

    Eide, E. A. & Torsvik, T. H. Paleozoic supercontinental assembly, mantle flushing, and genesis of the Kiaman Superchron. Earth Planet. Sci. Lett. 144, 389–402 (1996).

  10. 10

    Gaffin, S. Phase difference between sea-level and magnetic reversal rate. Nature 329, 816–819 (1987).

  11. 11

    Haggerty, S. E. Superkimberlites — a geodynamic diamond window to the earths core. Earth Planet. Sci. Lett. 122, 57–69 (1994).

  12. 12

    Larson, R. L. & Kincaid, C. Onset of mid-Cretaceous volcanism by elevation of the 670 km thermal boundary layer. Geology 24, 551–554 (1996).

  13. 13

    Larson, R. L. & Olson, P. Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett. 107, 437–447 (1991).

  14. 14

    Pétrélis, F., Besse, J. & Valet, J.-P. Plate tectonics may control geomagnetic reversal frequency. Geophys. Res. Lett. 38, L19303 (2011).

  15. 15

    Zhang, N. & Zhong, S. J. Heat fluxes at the Earth's surface and core-mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. Earth Planet. Sci. Lett. 306, 205–216 (2011).

  16. 16

    Ricou, L. E. & Gibert, D. The magnetic reversal sequence studied using wavelet analysis: a record of the Earth's tectonic history at the core-mantle boundary. CR Acad. Sci. II A 325, 753–759 (1997).

  17. 17

    Vogt, P. R. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature 240, 338–342 (1972).

  18. 18

    Jones, G. M. Thermal interaction of core and mantle and long-term behavior of geomagnetic-field. J. Geophys. Res. 82, 1703–1709 (1977).

  19. 19

    Loper, D. E. & Mccartney, K. Mantle plumes and the periodicity of magnetic-field reversals. Geophys. Res. Lett. 13, 1525–1528 (1986).

  20. 20

    Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core-mantle boundary. Nature 466, 352–355 (2010).

  21. 21

    Van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci. 3, 36–40 (2010).

  22. 22

    Constable, C. G. Modelling the geomagnetic field from syntheses of paleomagnetic data. Phys. Earth Planet. Inter. 187, 109–117 (2011).

  23. 23

    Korte, M. & Holme, R. On the persistence of geomagnetic flux lobes in global Holocene field models. Phys. Earth Planet. Inter. 182, 179–186 (2010).

  24. 24

    Hoffman, K. A. & Singer, B. S. Magnetic source separation in Earth's outer core. Science 321, 1800–1800 (2008).

  25. 25

    Christensen, U. R. Geodynamo models: Tools for understanding properties of Earth's magnetic field. Phys. Earth Planet. Inter. 187, 157–169 (2011).

  26. 26

    Kutzner, C. & Christensen, U. R. Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys. J. Int. 157, 1105–1118 (2004).

  27. 27

    Buffett, B. A. in Core Dynamics Vol. 8 Treatise on Geophysics (ed. Olson, P.) Ch. 12, 345–358 (Elsevier, 2007).

  28. 28

    Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res.-Sol. Ea. 100, 6093–6095 (1995).

  29. 29

    Tominaga, M., Sager, W. W., Tivey, M. A. & Lee, S. M. Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior. J. Geophys. Res.-Sol. Ea. 113, B07110 (2008).

  30. 30

    Sager, W. W., Weiss, C. J., Tivey, M. A. & Johnson, H. P. Geomagnetic polarity reversal model of deep-tow profiles from the Pacific Jurassic Quiet Zone. J. Geophys. Res.-Sol. Ea. 103, 5269–5286 (1998).

  31. 31

    Tominaga, M. & Sager, W. W. Revised Pacific M-anomaly geomagnetic polarity timescale. Geophys. J. Int. 182, 203–232 (2010).

  32. 32

    Gradstein, F. M., Ogg, J. G. & Smith, A. G. A Geologic Time Scale 2004 589 (Cambridge Univ. Press, 2004).

  33. 33

    Ogg, J. G. in A Geological Time Scale 2004 (eds Gradstein, F. M., Ogg, J. G. & Smith, A. G.) 307–339 (Cambridge Univ. Press, 2004).

  34. 34

    Ogg, J. G., Coe, A. L., Przybylski, P. A. & Wright, J. K. Oxfordian magnetostratigraphy of Britain and its correlation to Tethyan regions and Pacific marine magnetic anomalies. Earth Planet. Sci. Lett. 289, 433–448 (2010).

  35. 35

    Gee, J. S. & Kent, D. V. in Geomagnetism Vol. 5 Treatise on Geophysics (ed. Kono, M.) Ch. 12, 455–507 (Elsevier, 2007).

  36. 36

    He, H., Pan, Y., Tauxe, L., Qin, H. & Zhu, R. Toward age determination of the M0r (Barremian–Aptian boundary) of the early Cretaceous. Phys. Earth Planet. Inter. 169, 41–48 (2008).

  37. 37

    Granot, R., Tauxe, L., Gee, J. S. & Ron, H. A view into the Cretaceous geomagnetic field from analysis of gabbros and submarine glasses. Earth Planet. Sci. Lett. 256, 1–11 (2007).

  38. 38

    Tauxe, L. & Yamazaki, T. in Geomagnetism Vol. 5 Treatise on Geophysics (ed Kono, M.) Ch. 13, 510–563 (Elsevier, 2007).

  39. 39

    Qin, H., He, H., Liu, Q. & Cai, S. Palaeointensity just at the onset of the Cretaceous normal superchron. Phys. Earth Planet. Inter. 187, 199–211 (2011).

  40. 40

    Tarduno, J. A. & Smirnov, A. V. in Timescales of the Paleomagnetic Field Vol. 145 Geophys. Monogr. Series (eds Channell, J. E. T., Kent, D. V., Lowrie, W. & Meert, J. G.) 328 (AGU, 2004).

  41. 41

    Granot, R., Dyment, J. & Gallet, Y. Geomagnetic field variability during the Cretaceous Normal Superchron. Nature Geosci. 5, 220–223 (2012).

  42. 42

    Prévot, M., Derder, M. E., Mcwilliams, M. & Thompson, J. Intensity of the Earths magnetic-field — evidence for a Mesozoic dipole low. Earth Planet. Sci. Lett. 97, 129–139 (1990).

  43. 43

    Valet, J. P. Time variations in geomagnetic intensity. Rev. Geophys 41, 1004 (2003).

  44. 44

    Perrin, M. & Shcherbakov, V. Paleointensity of the earth's magnetic field for the past 400 Ma: Evidence for a dipole structure during the Mesozoic Low. J. Geomagn. Geoelectr. 49, 601–614 (1997).

  45. 45

    Tarduno, J. A. & Cottrell, R. D. Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals. J. Geophys. Res. B-Sol. Earth 110, 1–10 (2005).

  46. 46

    McElhinny, M. W. & Larson, R. L. Jurassic dipole low defined from land and sea data. Eos Trans. AGU 84, 362 (2003).

  47. 47

    Biggin, A. J., van Hinsbergen, D., Langereis, C. G. G. B., S., & Deenen, M. H. L. Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic. Phys. Earth Planet. Inter. 169, 3–19 (2008).

  48. 48

    McFadden, P. L. & Merrill, R. T. Evolution of the geomagnetic reversal rate since 160 Ma: Is the process continuous? J. Geophys. Res.-Sol. Ea. 105, 28455–28460 (2000).

  49. 49

    Langereis, C. G., Krijgsman, W., Muttoni, G. & Menning, M. Magnetostratigraphy — concepts, definitions, and applications. Newslett Stratigr. 43, 207–233 (2010).

  50. 50

    Pavlov, V. & Gallet, Y. A third superchron during the Early Paleozoic. Episodes 28, 78–84 (2005).

  51. 51

    Pavlov, V. & Gallet, Y. Middle Cambrian high magnetic reversal frequency (Kulumbe River section, northwestern Siberia) and reversal behaviour during the Early Palaeozoic. Earth Planet. Sci. Lett. 185, 173–183 (2001).

  52. 52

    Kouchinsky, A. et al. The SPICE carbon isotope excursion in Siberia: a combined study of the upper Middle Cambrian-lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform. Geol. Mag. 145, 609–622 (2008).

  53. 53

    Pavlov, V. & Gallet, Y. Variations in geomagnetic reversal frequency during the Earth's middle age. Geochem. Geophys. Geosys. 11, Q01Z10 (2010).

  54. 54

    Aubert, J., Labrosse, S. & Poitou, C. Modelling the palaeo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009).

  55. 55

    Driscoll, P. & Olson, P. Effects of buoyancy and rotation on the polarity reversal frequency of gravitationally driven numerical dynamos. Geophys. J. Int. 178, 1337–1350 (2009).

  56. 56

    Driscoll, P. & Olson, P. Superchron cycles driven by variable core heat flow. Geophys. Res. Lett. 38, L09304 (2011).

  57. 57

    Olson, P. Gravitational dynamos and the low-frequency geomagnetic secular variation. Proc. Natl Acad. Sci. USA 105, 20159–20166 (2007).

  58. 58

    Wicht, J., Stellmach, S. & Harder, H. in Handbook of Geomathematics (eds Freeden, W., Nashed, M. Z. & Sonar, T.) (Springer, 2010).

  59. 59

    Olson, P. & Christensen, U. R. Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett. 250, 561–571 (2006).

  60. 60

    Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical conductivity of iron at Earth's core conditions. Nature 485, 355–358 (2012).

  61. 61

    Christensen, U. R. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006).

  62. 62

    Glatzmaier, G. A., Coe, R. S., Hongre, L. & Roberts, P. H. The role of the Earth's mantle in controlling the frequency of geomagnetic reversals. Nature 401, 885–890 (1999).

  63. 63

    Olson, P. L., Coe, R. S., Driscoll, P. E., Glatzmaier, G. A. & Roberts, P. H. Geodynamo reversal frequency and heterogeneous core-mantle boundary heat flow. Phys. Earth Planet. Inter. 180, 66–79 (2010).

  64. 64

    Pétrélis, F., Fauve, S., Dormy, E. & Valet, J. P. Simple mechanism for reversals of Earth's magnetic field. Phys. Rev. Lett. 102, 144503 (2009).

  65. 65

    Wicht, J., Stellmach, S. & Harder, H. in Geomagnetic field variations — Space–time structure, processes, and effects on system Earth. (eds Glassmeier, K. H., Soffel, H. & Negendank, J.) 107–158 (Springer, 2009).

  66. 66

    Lay, T., Hernlund, J. & Buffett, B. A. Core-mantle boundary heat flow. Nature Geosci. 1, 25–32 (2008).

  67. 67

    Van der Hilst, R. D. et al. Seismostratigraphy and thermal structure of Earth's core-mantle boundary region. Science 315, 1813–1817 (2007).

  68. 68

    Garnero, E. J., Lay, T. & McNamara, A. in Plates, plumes, and planetary processes Vol. 430 Geol. Soc. Am. Special Paper (eds Foulger, G. R. & Jurdy, D. M.) 79–101 (2007).

  69. 69

    Machetel, P. & Thomassot, E. Cretaceous length of day perturbation by mantle avalanche. Earth Planet. Sci. Lett. 202, 379–386 (2002).

  70. 70

    Fukao, Y., Widiyantoro, S. & Obayashi, M. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys. 39, 291–323 (2001).

  71. 71

    Van der Voo, R., Spakman, W. & Bijwaard, H. Mesozoic subducted slabs under Siberia. Nature 397, 246–249 (1999).

  72. 72

    Van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

  73. 73

    Grand, S. P., Van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).

  74. 74

    Goes, S., Capitanio, F. A. & Morra, G. Evidence of lower-mantle slab penetration phases in plate motions. Nature 451, 981–984 (2008).

  75. 75

    Steinberger, B. M. & Torsvik, T. H. A geodynamic model of plumes from the margins of large low shear velocity provinces. Geochem. Geophys. Geosys. 13, Q01W09 (2012).

  76. 76

    Čížková, H., van den Berg, A. P., Spakman, W. & Matyska, C. The viscosity of Earth´s lower mantle inferred from sinking speed of subducted lithosphere. Phys. Earth Planet. Inter. http://dx.doi.org/10.1016/j.pepi.2012.1002.1010 (in the press).

  77. 77

    Labrosse, S. Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett. 199, 147–156 (2002).

  78. 78

    Gonnermann, H. M., Jellinek, A. M., Richards, M. A. & Manga, M. Modulation of mantle plumes and heat flow at the core mantle boundary by plate-scale flow: results from laboratory experiments. Earth Planet. Sci. Lett. 226, 53–67 (2004).

  79. 79

    Nakagawa, T. & Tackley, P. J. Deep mantle heat flow and thermal evolution of the Earth's core in thermochemical multiphase models of mantle convection. Geochem. Geophys. Geosys. 6, Q08003 (2005).

  80. 80

    Thorne, M. S., Garnero, E. J. & Grand, S. P. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004).

  81. 81

    Tan, E., Leng, W., Zhong, S. J. & Gurnis, M. On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle. Geochem. Geophys. Geosys. 12, Q07005 (2011).

  82. 82

    Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet. Sici. Lett. 265, 49–60 (2008).

  83. 83

    Burke, K. Plate tectonics, the Wilson Cycle, and mantle plumes: geodynamics from the top. Annu. Rev. Earth Planet. Sci. 39, 1–29 (2011).

  84. 84

    Larson, R. L. Latest pulse of Earth — evidence for a midcretaceous superplume. Geology 19, 547–550 (1991).

  85. 85

    Bryan, S. E. & Ernst, R. E. Revised definition of large igneous provinces (LIPs). Earth-Sci. Rev. 86, 175–202 (2008).

  86. 86

    Olson, P., Schubert, G. & Anderson, C. Plume formation in the D-layer and the roughness of the core mantle boundary. Nature 327, 409–413 (1987).

  87. 87

    Thompson, P. F. & Tackley, P. J. Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity. Geophys. Res. Lett. 25, 1999–2002 (1998).

  88. 88

    Van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V. & Gassmoller, R. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J. Geophys. Res.-Sol. Ea. 116, B06101 (2011).

  89. 89

    Gold, T. Instability of the Earths axis of rotation. Nature 175, 526–529 (1955).

  90. 90

    Steinberger, B. & Torsvik, T. H. Toward an explanation for the present and past locations of the poles. Geochem. Geophys. Geosys. 11, Q06W06 (2010).

  91. 91

    Tsai, V. C. & Stevenson, D. J. Theoretical constraints on true polar wander. J. Geophys. Res.-Sol. Ea. 112, B05415 (2007).

  92. 92

    Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–626 (2008).

  93. 93

    Mitchell, R. N., Kilian, T. M. & Evans, D. A. D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature 482, 208–296 (2012).

  94. 94

    Torsvik, T. H. et al. Phanerozoic polar wander, paleogeography and dynamics. Earth-Sci. Rev. http://dx.doi.org/10.1016/j.earscirev.2012.06.007 (2012).

  95. 95

    Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosys. 3, 1003 (2002).

  96. 96

    Tan, E., Gurnis, M. & Han, L. J. Slabs in the lower mantle and their modulation of plume formation. Geochem. Geophys. Geosys. 3, 1067 (2002).

  97. 97

    Biggin, A., McCormack, A. & Roberts, A. Paleointensity database updated and upgraded. Eos Trans. AGU 91, 15 (2010).

  98. 98

    Thellier, E. & Thellier, O. Sur l'intensité du champ magnétique terrestre dans la passé historique et géologique. Ann. Géophys. 15, 285–376 (1959).

  99. 99

    Hill, M. J. & Shaw, J. Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique. Geophys. J. Int. 142, 487–504 (2000).

  100. 100

    Yamamoto, Y., Tsunakawa, H. & Shibuya, H. Palaeointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities. Geophys. J. Int. 153, 263–276 (2003).

Download references


A.J.B. is funded by a NERC Advanced Fellowship (NE/F015208/1). N.S., A.J.B. and R.H. are funded by a NERC standard grant (NE/H021043/1). A.J.B. acknowledges valuable discussions with Neil Thomas and Mimi Hill. J.A. acknowledges support from program PNP/SEDI-TPS of French Instutut National des Sciences de l'Univers (INSU). T.H.T. acknowledges the European Research Council for financial support.

Author information

A.J.B., B.S. and J.A. prepared the text with contributions from all other authors. B.S. supplied the mantle modelling results. New analyses were performed by A.J.B and B.S. All authors contributed to discussions about the ideas presented.

Correspondence to A. J. Biggin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 480 kb)

Supplementary Movie

Supplementary Movie (WMV 1361 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biggin, A., Steinberger, B., Aubert, J. et al. Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nature Geosci 5, 526–533 (2012) doi:10.1038/ngeo1521

Download citation

Further reading